Multivariate associations of flavonoid and biomass accumulation in white clover (Trifolium repens) under drought

2012 ◽  
Vol 39 (2) ◽  
pp. 167 ◽  
Author(s):  
Wouter L. Ballizany ◽  
Rainer W. Hofmann ◽  
M. Z. Zulfiqhar Jahufer ◽  
Brent A. Barrett

White clover (Trifolium repens L.) is an important pasture legume in temperate regions, but growth is often strongly reduced under summer drought. Cloned individuals from a full-sib progeny of a pair cross between two phenotypically distinct white clover populations were exposed to water deficit in pots under outdoor conditions for 9 weeks, while control pots were maintained at field capacity. Water deficit decreased leaf water potential by more than 50% overall, but increased the levels of the flavonol glycosides of quercetin (Q) and the ratio of quercetin and kaempferol glycosides (QKR) by 111% and by 90%, respectively. Water deficit reduced dry matter (DM) by 21%, with the most productive genotypes in the controls showing the greatest proportional reduction. The full-sib progeny displayed a significant increase in the root : shoot ratio by 53% under water deficit. Drought-induced changes in plant morphology were associated with changes in Q, but not kaempferol (K) glycosides. The genotypes with high QKR levels reduced their DM production least under water deficit and increased their Q glycoside levels and QKR most. These data show, at the individual genotype level, that increased Q glycoside accumulation in response to water deficit stress can be positively associated with retaining higher levels of DM production.

2007 ◽  
Vol 58 (6) ◽  
pp. 1271-1279 ◽  
Author(s):  
B.-R. Lee ◽  
K.-Y. Kim ◽  
W.-J. Jung ◽  
J.-C. Avice ◽  
A. Ourry ◽  
...  

2019 ◽  
Vol 43 (1) ◽  
pp. 58-66 ◽  
Author(s):  
Muhammad Adeel GHAFAR ◽  
Nudrat Aisha AKRAM ◽  
Muhammad ASHRAF ◽  
Muhammad Yasin ASHRAF ◽  
Muhammad SADIQ

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 149
Author(s):  
Mohammed Bouskout ◽  
Mohammed Bourhia ◽  
Mohamed Najib Al Feddy ◽  
Hanane Dounas ◽  
Ahmad Mohammad Salamatullah ◽  
...  

Agricultural yields are under constant jeopardy as climate change and abiotic pressures spread worldwide. Using rhizospheric microbes as biostimulants/biofertilizers is one of the best ways to improve agro-agriculture in the face of these things. The purpose of this experiment was to investigate whether a native arbuscular mycorrhizal fungi inoculum (AMF-complex) might improve caper (Capparis spinosa) seedlings’ nutritional status, their morphological/growth performance and photosynthetic efficiency under water-deficit stress (WDS). Thus, caper plantlets inoculated with or without an AMF complex (+AMF and −AMF, respectively) were grown under three gradually increasing WDS regimes, i.e., 75, 50 and 25% of field capacity (FC). Overall, measurements of morphological traits, biomass production and nutrient uptake (particularly P, K+, Mg2+, Fe2+ and Zn2+) showed that mycorrhizal fungi inoculation increased these variables significantly, notably in moderate and severe WDS conditions. The increased WDS levels reduced the photochemical efficiency indices (Fv/Fm and Fv/Fo) in −AMF plants, while AMF-complex application significantly augmented these parameters. Furthermore, the photosynthetic pigments content was substantially higher in +AMF seedlings than −AMF controls at all the WDS levels. Favorably, at 25% FC, AMF-colonized plants produce approximately twice as many carotenoids as non-colonized ones. In conclusion, AMF inoculation seems to be a powerful eco-engineering strategy for improving the caper seedling growth rate and drought tolerance in harsh environments.


1988 ◽  
Vol 28 (3) ◽  
pp. 321 ◽  
Author(s):  
SJ Blaikie ◽  
FM Martin ◽  
WK Mason ◽  
DJ Connor

Field canopy chambers were used to measure the effect of a range of soil water contents from surface ponding to very dry soil and the effect of high summer temperatures on the photosynthesis of irrigated white clover and paspalum pastures. Water was ponded for 5-12 days on swards of white clover and paspalum at full cover and on others that had been defoliated to a height of 50 mm. Photosynthetic rate was monitored each day and compared with a non-ponded control. In all cases there was little response in photosynthetic rate to ponding either with or without supplemental nitrogen fertiliser. Photosynthesis of full swards of white clover and paspalum was monitored during a drying cycle following irrigation and compared with the photosynthesis of a well-watered control. Soil water deficit was expressed in terms of cumulative evaporation minus rainfall (mm E - R) after irrigation. Water deficit stress reduced the maximum photosynthetic rate of white clover by 50% (from 0.8 mg CO2/m2.s at 25 mm E - R to 0.4 mg CO2/m2.s at 75 mm E - R), but the photosynthetic rate of paspalum did not decline until 70 mm E - R. At high irradiance, temperatures between 24 and 33�C had little effect on the photosynthetic rate of well-watered white clover, whereas the rate in paspalum was higher at temperatures between 29 and 38�C than at temperatures of 24-29�C. The slow surface drainage and subsequent rapid drying of the root-zone of flood irrigated soils, combined with the high temperatures experienced in northern Victoria during summer, favour paspalum and severely limit the productivity of white clover.


2020 ◽  
Vol 192 (7) ◽  
Author(s):  
Abouzar Bazrafshan ◽  
Mehdi Shorafa ◽  
Mohammad Hossein Mohammadi ◽  
Ali Asghar Zolfaghari ◽  
Daniël van de Craats ◽  
...  

1997 ◽  
Vol 37 (2) ◽  
pp. 159 ◽  
Author(s):  
S. G. Clark ◽  
M. J. McFadden

Summary. The herbage yield, stolon characteristics and soil seed reserves of a diverse range of white clover (Trifolium repens L.) cultivars were studied at Hamilton in south-western Victoria. The cultivars were sown with perennial grass (Phalaris aquatica L.) and the pasture was rotationally grazed by sheep. The aim of the study was to identify white clover types which would persist under sheep grazing. The widely used cultivar, Haifa, fails to persist in this environment. Cultivars were divided into 3 groups depending on leaf size (range 2.5–13.0 cm2). Large-leaved cultivars were the most productive in the first year of the experiment but by year 3 some of the intermediate leaf-size cultivars were the most productive. Haifa (large leaved) was particularly unproductive in the third year compared with other large and intermediate leaf-size cultivars. Stolon characteristics were measured in early spring 1987, mid summer 1988 and early autumn 1988. Total stolon yield on each occasion was 0.46–0.99, 0.65–1.68 and 0.05–0.25 t DM/ha respectively. Intermediate leaf- size cultivars tended to have the highest stolon yields on each occasion. Stolon yield declined at the same rate (mean 87%; range 81–92%) in all cultivars between the second and third sampling date indicating that there is no variation in the cultivars’ ability to survive the summer drought period. Although seed reserves for most cultivars were high at the end of the experiment (range 11–130 kg/ha) no seedling recruitment was observed and seed is thought to play no role in sward survival in this environment. Plant breeders developing white clover cultivars for this environment should concentrate on maximising stolon yield at the beginning and end of the summer drought period (January–mid March). Intermediate leaf-size genotypes are likely to provide the best combination of stolon and herbage yield. Grazing management should also aim to maximise stolon yield at these critical times. The use of large-leaved, non-stoloniferous cultivars should be discouraged by advisers as they are not suited to this marginal environment under sheep grazing.


Author(s):  
Aref M. Alshameri ◽  
Salem S. Alghamdi ◽  
Abdelrhman Z. Gaafar ◽  
Bander M. Almunqedhi ◽  
Ahmed A. Qahtan ◽  
...  

Background: Faba beans (Vicia faba L.) are important grain legumes but, as with many crops, these are also susceptible to water deficit. The aim of this study was to evaluate the yield components of twenty faba bean genotypes grown under water deficit.Methods: Three water treatments were applied, 25%, 50% and 100% of field capacity. A split-plot arrangement in a randomized complete block design with three replicates was used.Result: The faba genotypes Gazira2, Kamline, L4, Cairo7 and Giza402 reached flowering earlier than other genotypes through stress-escape mechanisms. Genotypes L4, Gazira1, Kamline, X.735 and Gazira2 had the highest seed yield under water-deficit conditions. Genotypes L4, X.735, 989/309/95, Kamline and Gazira1 exhibited the highest levels of biological yield. Finally, the genotypes Kamline and L.4 had higher yields and yield components under water-deficit stress. Consequently, they should be considered for use in breeding programs aimed at developing new cultivars that are better adapted to harsh environmental conditions.


1995 ◽  
Vol 75 (3) ◽  
pp. 605-611 ◽  
Author(s):  
K. M. Volkmar ◽  
C. Chang

Hydrophilic super-absorbent polymers retain large amounts of plant-available moisture and have been promoted for use as soil amendments in drought-prone regions. This controlled-environment study evaluated the capacity of two commercial polymer gels, Grogel and Transorb, to mitigate the effects of recurring moderate water-deficit stress (dry-down to 50% field capacity before rewatering) on growth and yield of barley and canola. Rates of 0.03, 0.12, 0.47 and 1.87 g polymer kg−1 sandy loam soil (1, 4, 16 and 64 times the recommended commercial application rate) were tested. Plants were grown at a soil moisture content of approximately 50% of field capacity. Neither polymer was effective at the commercially recommended rate. Barley and canola grain yields were unaffected at any Grogel rate, and Transorb had no effect on barley grain yield. Grogel at the highest rate enhanced early shoot mass, mature biomass production and grain yield of barley and increased leaf RWC. Canola had greater early and late vegetative biomass, but pod yield was not increased by Grogel at any rate. Transorb was most effective at four times the recommended rate, significantly increasing tiller and fertile spike number and mature biomass production at that rate. Leaf RWC were unaffected by Transorb treatment. Grogel stimulated root growth of barley but had no effect on roots of canola. Both polymers tended to increase consumptive water use. Spatial restriction was found to drastically reduce the water retention of both polymers and limit the absorbency of both polymers in this study. The high rates of polymer required to elicit a crop yield response under relatively mild water-deficit conditions limit the value of these polymers for agricultural field use of the crop species tested. Key words: Barley, canola, drought, hydrophilic polymer, soil conditioner, water stress


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0254906
Author(s):  
Sidra Shafiq ◽  
Nudrat Aisha Akram ◽  
Muhammad Ashraf ◽  
Mohammad S. AL-Harbi ◽  
Bassem N. Samra

Now-a-days, plant-based extracts, as a cheap source of growth activators, are being widely used to treat plants grown under extreme climatic conditions. So, a trial was conducted to assess the response of two maize (Zea mays L.) varieties, Sadaf (drought tolerant) and Sultan (drought sensitive) to foliar-applied sugar beet extract (SBE) under varying water-deficit conditions. Different SBE (control, 1%, 2%, 3% & 4%) levels were used in this study, and plants were exposed to water-deficit [(75% and 60% of field capacity (FC)] and control (100% FC) conditions. It was observed that root and shoot dry weights (growth), total soluble proteins, RWC-relative water contents, total phenolics, chlorophyll pigments and leaf area per plant decreased under different water stress regimes. While, proline, malondialdehyde (MDA), RMP-relative membrane permeability, H2O2-hydrogen peroxide and the activities of antioxidant enzymes [CAT-catalase, POD-peroxidase and SOD-superoxide dismutase] were found to be improved in water stress affected maize plants. Exogenous application of varying levels of SBE ameliorated the negative effects of water-deficit stress by enhancing the growth attributes, photosynthetic pigments, RWC, proline, glycinebetaine (GB), activities of POD and CAT enzymes and levels of total phenolics, whereas it reduced the lipid peroxidation in both maize varieties under varying water stress levels. It was noted that 3% and 4% levels of SBE were more effective than the other levels used in enhancing the growth as well as other characteristics of the maize varieties. Overall, the sugar beet extract proved to be beneficial for improving growth and metabolism of maize plants exposed to water stress.


Sign in / Sign up

Export Citation Format

Share Document