Genotypic variation in the accumulation of water soluble carbohydrates in wheat

2012 ◽  
Vol 39 (7) ◽  
pp. 560 ◽  
Author(s):  
C. Lynne McIntyre ◽  
David Seung ◽  
Rosanne E. Casu ◽  
Gregory J. Rebetzke ◽  
Ray Shorter ◽  
...  

Water-soluble carbohydrates (WSC) stored in the stems and leaf sheaths of winter cereals provide an important source of assimilate for remobilisation during grain-filling. Consequently, WSC are a major contributor to wheat grain yield and grain size in all environments but especially where photosynthesis is compromised as occurs where water is limiting. Breeding programs targeting greater WSC should provide improved varieties with greater and more stable yields in stress environments. To facilitate selection for WSC, genetic and genomic approaches are being used to determine the genetic basis of – and define DNA probes for – marker-aided selection for this important drought-adaptive trait. Empirical studies have identified both WSC concentration and content to be under complex genetic control of many genes. Quantitative trait loci (QTL) for WSC have been identified in several wheat populations with individual QTL explaining small amounts of phenotypic variation, typically of less than 20%. Many of these QTL are common across multiple, genetically-unrelated wheat populations. Evaluation of gene expression in high and low WSC wheat progeny lines from a well characterised wheat population has identified significant differences in expression of genes from different gene categories. For example, high WSC progeny lines have higher levels of expression of genes involved in carbohydrate metabolism and lower levels of expression of genes involved in cell wall and amino acid metabolism than low WSC lines. Genetic mapping reveals several candidate genes co-locating with QTL for WSC. In addition, expression QTL (eQTL) for selected candidate genes co-locate with WSC QTL; co-location of the genes and eQTL with WSC QTL make these genes stronger candidate genes for the WSC trait.

2018 ◽  
Vol 69 (5) ◽  
pp. 515 ◽  
Author(s):  
Fatemeh Saeidnia ◽  
Mohammad Mahdi Majidi ◽  
Aghafakhr Mirlohi ◽  
Benyamin Ahmadi

The genetic basis of physiological responses to drought and its association with productivity, persistence and summer dormancy is not clear in orchardgrass (Dactylis glomerata L.). Thirty-six orchardgrass genotypes were evaluated under water stress and non-stressed conditions during 2 years (2013–14). High genotypic variation was observed for all of the agronomic and physiological traits. Water stress reduced dry matter yield, relative water content and chlorophyll content while significantly increasing carotenoids, water-soluble carbohydrates, proline and chlorophyll a : b ratio. The results indicated that carotenoids and proline accumulation could not be used for discriminating drought-tolerant genotypes of orchardgrass, whereas water-soluble carbohydrates may be used to achieve this purpose. Moreover, the results showed that the stable genotypes that have lower changes in productivity from normal to water-stress environments also have more persistence. No association was found between summer dormancy and drought tolerance measured by both physiological and yield-based drought-tolerance indices. Some of the drought-tolerant genotypes had relatively high persistence and better autumn recovery, a characteristic useful for the development of new synthetic varieties.


2006 ◽  
Vol 33 (9) ◽  
pp. 799 ◽  
Author(s):  
Sari A. Ruuska ◽  
Greg J. Rebetzke ◽  
Anthony F. van Herwaarden ◽  
Richard A. Richards ◽  
Neil A. Fettell ◽  
...  

The water-soluble carbohydrate (WSC) that accumulates in the stems of wheat during growth can be an important contributor to grain filling, particularly under conditions when assimilation is limited, such as during end-of-season drought. WSC concentration was measured at anthesis across a diverse set of wheat genotypes over multiple environments. Environmental differences in WSC concentration were large (means for the set ranging between 108 and 203 mg g–1 dry weight), and there were significant and repeatable differences in WSC accumulation among genotypes (means ranging from 112 to 213 mg g–1 dry weight averaged across environments), associated with large broad-sense heritability (H = 0.90 ± 0.12). These results suggest that breeding for high WSC should be possible in wheat. The composition of the WSC, examined in selected genotypes, indicated that the variation in total WSC was attributed mainly to variation in the fructan component, with the other major soluble carbohydrates, sucrose and hexose, varying less. The degree of polymerisation (DP) of fructo-oligosaccharides was up to ~13 in samples where higher levels of WSC were accumulated, owing either to genotype or environment, but the higher DP components (DP > 6) were decreased in samples of lower total WSC. The results are consistent with fructan biosynthesis occurring via a sequential mechanism that is dependent on the availability of sucrose, and differences in WSC contents of genotypes are unlikely to be due to major mechanistic differences.


2021 ◽  
Vol 50 (1) ◽  
pp. 51-59
Author(s):  
Md Amirul Islam ◽  
Md Soaliman Ali Fakir ◽  
Md Alamgir Hossain ◽  
Maria Akter Sathi

To study the genotypic variation in the rate of grain filling and contribution of culm reserves to yield in wheat, an experiment was conducted consisting 12 popular cultivars of Bangladesh, viz., BARI Gom21 (Shatabdi), BARI Gom22 (Shufi), BARI Gom23 (Bijoy), BARI Gom24 (Prodip), BARI Gom25, BARI Gom26, Akbar (BAW 43), BARI Gom18 (Protiva), BARI Gom19 (Sourav), BARI Gom20 (Gourab), Agrani (BAW38), and Kanchan (BAW28). Tillers were sampled from anthesis to maturity to determine the changes in dry weights of different parts to examine the contribution of culm reserves to grain yield. The results in the experiment revealed that the grain yield varied from 2.61 to 5.35 ton/ha with the mean of 4.18 ton/ha. Among the cultivars BARI Gom24, BARI Gom26, BARI Gom19, and BARI Gom23 appeared as high yielders while Kanchan, Agrani, BARI Gom20, BARI Gom22 as the low yielders. Generally, high yielding cultivars showed higher total dry mass accumulation compared to low yielding ones. Moreover, high yielding cultivars also showed higher water soluble carbohydrates (WSCs) contents in culm at milk ripe stage than the low yielders. In general, contribution of culm WSCs to grain yield was more in high yielders than low yielders and it ranged from 2 to 29% of total grain weight. So, higher contribution of culm reserves resulted in higher grain yield of wheat.


2017 ◽  
Vol 9 (3) ◽  
pp. 42 ◽  
Author(s):  
Khan Nadia ◽  
Xiaoping Chang ◽  
Ruilian Jing

Drought is a major environmental stress threatening wheat (Triticum aestivum L.) productivity worldwide. Although drought impedes wheat performance at all growth stages, it is more critical during the flowering and grain-filling phases and results in substantial yield losses. In this context, stem water-soluble carbohydrates (SWSC) were dissected at flowering and grain filling stages under drought stress (DS) and well-watered (WW) conditions using a population consisted of 116 wheat accessions in this research. The main goal was to dissect the genetic basis of water-soluble carbohydrates and the agronomic traits using association mapping approach and identify linked molecular markers. The results showed significant and positive correlations for stem water-soluble carbohydrates at grain filling (SWSCG) with accumulating efficiency of stem water-soluble carbohydrates (AESWSC) and grain filling efficiency at the late stage (GFEL). The accumulating and grain filling efficiency at grain filling stage could play an important role for SWSC especially under DS condition. Four favorable alleles for plant height (PH) and grain yield (GY) were identified in two water environments. Xbarc78-4A163and Xbarc78-4A155 were variant alleles for PH which were identified in both water regimes. Whereas Xwmc25-2D151 and Xgwm165-4B191 positively linked with GY in WW. Although Xwmc420-4A121and Xwmc112-2D215 were alleles for stem water-soluble carbohydrates at flowering (SWSCF) and SWSCG in DS but the frequency were < 5% so they were considered as rare alleles. These SSR markers which explained significant level of phenotypic variability for chosen traits could be used for selection of genotypes in wheat breeding programs through marker-assisted selection.


2016 ◽  
Vol 14 (2) ◽  
pp. 203-209 ◽  
Author(s):  
G. A. Priadkina ◽  
O. V. Zborovska ◽  
P. L. Ryzhykova

Aim. The search of relationship between characteristics of the stem deposition ability in winter wheat modern varieties and grains productivity under different environmental conditions. Methods. Field, biochemical (soluble stem carbohydrates) methods and mathematical-statistical analysis. Results. The deposition ability of the stem - a difference of content and the total amount of the water-soluble carbohydrates in the stem of the main shoot and weight of its dry matter content in the phases of flowering and full maturity – for 5 varieties of winter wheat in the years significantly different in weather conditions during grain filling were investigated. It is shown that the difference in weight of stem dry matter at the flowering phase and full ripeness and the grain mass of ear significantly varied with different weather conditions during the grain filling, as well as different varieties. A correlation between the mass of a main shoot grain ear with these indices was analyzed. A close positive correlation (r=0.88±0.13) between the grain mass of ear and the difference in weight of stem dry matter at the flowering phase and full ripeness was found. Conclusions. A physiological marker associated with high productivity of ear in different environmental conditions, which is simple to measure and closely linked to weight of grain from an ear was proposed. Keywords: Triticum aestivum L., stem deposited ability, water-soluble carbohydrates, grain productivity.


2021 ◽  
Vol 9 (5) ◽  
pp. 598-609
Author(s):  
Ashutosh Srivastava ◽  
◽  
Puja Srivastava ◽  
R S Sarlach ◽  
Mayank Anand Gururani ◽  
...  

Physiological traits of wheat genotypes and their trait relation to drought conditions are important to identify the genotype in target environments. Thus, genotype selection should be based on multiple physiological traits in variable environments within the target region. This study was conducted at Punjab Agricultural University during rabi crop seasons 2012-13 and 2013-14 to study the recombinant inbred lines (RILs) of wheat genotypes derived from traditional landraces and modern cultivars (C518/2*PBW343) based on various morpho-physiological traits. A total of 175 RILs were selected for this study based on various tolerance indices. The genotype by trait (GT) biplot analysis was applied to data from seven high-yielding RILs grown under irrigated (E1) and rainfed environments (E2). The GGE biplot explained 100% of the total variation for chlorophyll content, grain filling period, peduncle length, water-soluble carbohydrates, grain number, grain yield, and 95.1% for canopy temperature, 94.9% for thousand-grain weight. GT-biplots indicated that the relationships among the studied traits were not consistent across environments, but they facilitated visual genotype comparisons and selection in each environment. RIL 84 and RIL108 were close to the average environment (ideal genotype) for all traits studied except chlorophyll content. A well-performing genotype with great environmental stability is called an "ideal genotype. Among all entries, these genotypes performed well. Therefore, among the traits studied, grain filling period, peduncle length, canopy temperature, water soluble carbohydrates, and 1000 grain weight contributed to grain yield under a stress environment. Furthermore, it may be used as a donor material in breeding programs and QTLs mapping.


Sign in / Sign up

Export Citation Format

Share Document