scholarly journals BIPLOT ANALYSIS FOR IDENTIFICATION OF SUPERIOR GENOTYPES IN A RECOMBINANT INBRED POPULATION OF WHEAT UNDER RAINFED CONDITIONS

2021 ◽  
Vol 9 (5) ◽  
pp. 598-609
Author(s):  
Ashutosh Srivastava ◽  
◽  
Puja Srivastava ◽  
R S Sarlach ◽  
Mayank Anand Gururani ◽  
...  

Physiological traits of wheat genotypes and their trait relation to drought conditions are important to identify the genotype in target environments. Thus, genotype selection should be based on multiple physiological traits in variable environments within the target region. This study was conducted at Punjab Agricultural University during rabi crop seasons 2012-13 and 2013-14 to study the recombinant inbred lines (RILs) of wheat genotypes derived from traditional landraces and modern cultivars (C518/2*PBW343) based on various morpho-physiological traits. A total of 175 RILs were selected for this study based on various tolerance indices. The genotype by trait (GT) biplot analysis was applied to data from seven high-yielding RILs grown under irrigated (E1) and rainfed environments (E2). The GGE biplot explained 100% of the total variation for chlorophyll content, grain filling period, peduncle length, water-soluble carbohydrates, grain number, grain yield, and 95.1% for canopy temperature, 94.9% for thousand-grain weight. GT-biplots indicated that the relationships among the studied traits were not consistent across environments, but they facilitated visual genotype comparisons and selection in each environment. RIL 84 and RIL108 were close to the average environment (ideal genotype) for all traits studied except chlorophyll content. A well-performing genotype with great environmental stability is called an "ideal genotype. Among all entries, these genotypes performed well. Therefore, among the traits studied, grain filling period, peduncle length, canopy temperature, water soluble carbohydrates, and 1000 grain weight contributed to grain yield under a stress environment. Furthermore, it may be used as a donor material in breeding programs and QTLs mapping.

2021 ◽  
Vol 12 ◽  
Author(s):  
Conxita Royo ◽  
Karim Ammar ◽  
Dolors Villegas ◽  
Jose M. Soriano

A panel of 172 Mediterranean durum wheat landraces and 200 modern cultivars was phenotyped during three years for 21 agronomic and physiological traits and genotyped with 46,161 DArTseq markers. Modern cultivars showed greater yield, number of grains per spike (NGS) and harvest index (HI), but similar number of spikes per unit area (NS) and grain weight than the landraces. Modern cultivars had earlier heading but longer heading-anthesis and grain-filling periods than the landraces. They had greater RUE (Radiation Use Efficiency) up to anthesis and lower canopy temperature at anthesis than the landraces, but the opposite was true during the grain-filling period. Landraces produced more biomass at both anthesis and maturity. The 120 genotypes with a membership coefficient q > 0.8 to the five genetic subpopulations (SP) that structured the panel were related with the geographic distribution and evolutionary history of durum wheat. SP1 included landraces from eastern countries, the domestication region of the “Fertile Crescent.” SP2 and SP3 consisted of landraces from the north and the south Mediterranean shores, where durum wheat spread during its migration westward. Decreases in NS, grain-filling duration and HI, but increases in early soil coverage, days to heading, biomass at anthesis, grain-filling rate, plant height and peduncle length occurred during this migration. SP4 grouped modern cultivars gathering the CIMMYT/ICARDA genetic background, and SP5 contained modern north-American cultivars. SP4 was agronomically distant from the landraces, but SP5 was genetically and agronomically close to SP1. GWAS identified 2,046 marker-trait associations (MTA) and 144 QTL hotspots integrating 1,927 MTAs. Thirty-nine haplotype blocks (HB) with allelic differences among SPs and associated with 16 agronomic traits were identified within 13 QTL hotspots. Alleles in chromosomes 5A and 7A detected in landraces were associated with decreased yield. The late heading and short grain-filling period of SP2 and SP3 were associated with a hotspot on chromosome 7B. The heavy grains of SP3 were associated with hotspots on chromosomes 2A and 7A. The greater NGS and HI of modern cultivars were associated with allelic variants on chromosome 7A. A hotspot on chromosome 3A was associated with the high NGS, earliness and short stature of SP4.


1978 ◽  
Vol 26 (3) ◽  
pp. 233-249
Author(s):  
J.H.J. Spiertz ◽  
H. van de Haar

The crop performance of semi-dwarf wheat cv. (Maris Hobbit) was compared with a standard-ht. cv. (Lely) at various levels of N supply. The grain yields of Maris Hobbit were considerably higher due to a higher number of grains and a heavier grain wt. Owing to the higher grain yield and a lower stem wt. the harvest index of Maris Hobbit was higher than that of Lely (0.47 and 0.40, resp.). The content of water-soluble carbohydrates in the stems of both cv. appeared to be very high until 3 wk after anthesis, despite the occurrence of low light intensities. Lely used more assimilates for structural stem material than did Maris Hobbit. Quantity and date of N application greatly affected grain number, but affected grain wt. to a lesser extent. Thus within each cv. grain number/m2 was the main determinant of grain yield. Late N dressings promoted photosynthetic production, grain wt. and CP content of the grain. The low CP contents of the grain were attributed to the low temp. during the grain-filling period. The distribution of N within the plant was only slightly influenced by N dressings and cv. differences. N harvest index ranged from 0.74 to 0.79. Grain N was derived from the vegetative organs (63-94%) and from uptake after anthesis (6-37%). The importance of carbohydrate and N economy for grain yield are discussed. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1252
Author(s):  
Md. Amirul Islam ◽  
Rajib Kumar De ◽  
Md. Alamgir Hossain ◽  
Md. Sabibul Haque ◽  
Md. Nesar Uddin ◽  
...  

Drought stress is one of the limiting factors for grain filling and yield in wheat. The grain filling and determinants of individual grain weight depend on current assimilation and extent of remobilization of culm reserves to grains. A pot experiment was conducted with eight wheat cultivars at the Pot House to study the grain filling and the contributions of reserves in culm, including the sheath to grain yield under drought stress. Drought stress was enforced by restricting irrigation during the grain-filling period. The plants (tillers) were harvested at anthesis, milk-ripe, and maturity. The changes in dry weights of leaves, culm with sheath, spikes, and grains; and the contribution of culm reserves to grain yield were determined. Results revealed that drought stress considerably decreased the grain filling duration by 15–24% and grain yield by 11–34%. Further, drought-induced early leaf senescence and reduced total dry matter production indicate the minimum contribution of current assimilation to grain yield. The stress reduced the contribution of culm reserves, the water-soluble carbohydrates (WSCs), to the grains. The accumulation of culm WSCs reached peak at milk ripe stage in control, varied from 28.6 to 84 mg culm−1 and that significantly reduced in the range from 14.9 to 40.6 mg culm−1 in stressed plants. The residual culm WSCs in control and stressed plants varied from 1.23 to 8.12 and 1.00 to 3.40 mg g−1 culm dry mass, respectively. BARI Gom 24 exhibited a higher contribution of culm WSCs to grain yield under drought, while the lowest contribution was found in Kanchan. Considering culm reserves WSCs and their remobilization along with other studied traits, BARI Gom 24 showed greater drought tolerance and revealed potential to grow under water deficit conditions in comparison to other cultivars.


2017 ◽  
Vol 9 (3) ◽  
pp. 42 ◽  
Author(s):  
Khan Nadia ◽  
Xiaoping Chang ◽  
Ruilian Jing

Drought is a major environmental stress threatening wheat (Triticum aestivum L.) productivity worldwide. Although drought impedes wheat performance at all growth stages, it is more critical during the flowering and grain-filling phases and results in substantial yield losses. In this context, stem water-soluble carbohydrates (SWSC) were dissected at flowering and grain filling stages under drought stress (DS) and well-watered (WW) conditions using a population consisted of 116 wheat accessions in this research. The main goal was to dissect the genetic basis of water-soluble carbohydrates and the agronomic traits using association mapping approach and identify linked molecular markers. The results showed significant and positive correlations for stem water-soluble carbohydrates at grain filling (SWSCG) with accumulating efficiency of stem water-soluble carbohydrates (AESWSC) and grain filling efficiency at the late stage (GFEL). The accumulating and grain filling efficiency at grain filling stage could play an important role for SWSC especially under DS condition. Four favorable alleles for plant height (PH) and grain yield (GY) were identified in two water environments. Xbarc78-4A163and Xbarc78-4A155 were variant alleles for PH which were identified in both water regimes. Whereas Xwmc25-2D151 and Xgwm165-4B191 positively linked with GY in WW. Although Xwmc420-4A121and Xwmc112-2D215 were alleles for stem water-soluble carbohydrates at flowering (SWSCF) and SWSCG in DS but the frequency were < 5% so they were considered as rare alleles. These SSR markers which explained significant level of phenotypic variability for chosen traits could be used for selection of genotypes in wheat breeding programs through marker-assisted selection.


2010 ◽  
Vol 37 (2) ◽  
pp. 147 ◽  
Author(s):  
Marta S. Lopes ◽  
Matthew P. Reynolds

Dehydration avoidance through cooler canopy temperature (CT) has been shown to explain over 60% yield variation in a random progeny derived from a Seri/Babax cross. A near ‘isomorphic’ subset of Seri/Babax progeny and parents encompassing a restricted range of height and phenology were used for detailed characterisation of drought-adaptive trait expression under contrasting water regimes. Under drought, five of the six progeny out yielded the best parent Babax by up to 35%. The main physiological attributes associated with drought adaptation were increased root dry weight at depth, transpiration rate – evidenced by grain carbon isotope discrimination (Δ13C) – grain filling duration and decreased CT during grain filling. Furthermore, increased root mass at depth was associated with reduced levels of stem water soluble carbohydrates (WSC) when comparing genotypes. It is concluded that differences in rooting depth expressed among iso-morphic wheat sister lines explains superior adaptation to drought. These effects can be detected in season using remote sensing. In addition, the data suggest that accumulation of stem carbohydrates and deep rooting may be two alternative strategies for adapting to drought stress, the latter being beneficial where water is available at depth.


2016 ◽  
Vol 14 (2) ◽  
pp. 203-209 ◽  
Author(s):  
G. A. Priadkina ◽  
O. V. Zborovska ◽  
P. L. Ryzhykova

Aim. The search of relationship between characteristics of the stem deposition ability in winter wheat modern varieties and grains productivity under different environmental conditions. Methods. Field, biochemical (soluble stem carbohydrates) methods and mathematical-statistical analysis. Results. The deposition ability of the stem - a difference of content and the total amount of the water-soluble carbohydrates in the stem of the main shoot and weight of its dry matter content in the phases of flowering and full maturity – for 5 varieties of winter wheat in the years significantly different in weather conditions during grain filling were investigated. It is shown that the difference in weight of stem dry matter at the flowering phase and full ripeness and the grain mass of ear significantly varied with different weather conditions during the grain filling, as well as different varieties. A correlation between the mass of a main shoot grain ear with these indices was analyzed. A close positive correlation (r=0.88±0.13) between the grain mass of ear and the difference in weight of stem dry matter at the flowering phase and full ripeness was found. Conclusions. A physiological marker associated with high productivity of ear in different environmental conditions, which is simple to measure and closely linked to weight of grain from an ear was proposed. Keywords: Triticum aestivum L., stem deposited ability, water-soluble carbohydrates, grain productivity.


2017 ◽  
Vol 15 (2) ◽  
pp. 174-181
Author(s):  
Md Rasel Rana ◽  
Md Masudul Karim ◽  
Md Juiceball Hassan ◽  
Md Alamgir Hossain ◽  
Md Ashraful Haque

Grain filling determines the grain weight, a major component of grain yield in cereals. Grain filling in barley depends on current assimilation and culm reserves (mainly water-soluble carbohydrates). Nowadays barley is facing heat stress problem which is mostly responsible to reduce the yield of barley. A field experiment was conducted at the Field Lab, Department of Crop Botany, BangladeshAgriculturalUniversity, Mymensingh during November 2015 to March 2016 to study the grain filling patterns and the contributions of culm reserves to grain yield under heat stress. The experiment consisted of two factors—barley cultivars and heat stress. The heat stress was imposed by late sowing. The tillers were sampled once a week during grain filling period to determine the changes in dry weights of different parts, viz., leaves, culm with sheath, spikes, and grains; and to examine the contribution of culm reserves to grain yield. The results in the experiment revealed that the grain yield was reduced by 22-28% due to the stress. The grain yield varied from 52 to 150 g m−2 with the mean of 102 g m−2 under control while it varied from 37 to 116 g m−2 with the mean of 75 g m−2 under heat stress. Among the cultivars studied BARI Barley5, BARI Barley2 and BARI Barley1, seemed as high yielders while BARI Barley3, BARI Barley4, BARI Barley6 as the low yielders under heat stress treatment. The reduction in grain yield was attributable mainly to lighter grain weight due to the stress. Heat stress drastically reduced the grain filling duration by 45–50%. However, the stress increased the grain filling rate by 6–53%. The amount of reserves remobilized to grain varied among the cultivars ranging from 4.8 to 12.77 mg spike−1 in control and from 1.73 to 6.25 mg spike−1 in stressed plants. The stressed barley plants exhibited lower accumulation of reserves in culm but they showed almost its complete remobilization to the grain. The contribution of culm reserves to grain yield varied from 1.13 to 19.52%, and 1.09 to 2.11% in control and in stressed plants, respectively. In conclusion, culm reserve is the important attributes in grain yield in Bangladeshi barley cultivars but the contribution remains almost unaffected due the post-anthesis heat stress.J. Bangladesh Agril. Univ. 15(2): 174-181, December 2017


2019 ◽  
Vol 6 (sp1) ◽  
pp. 556-559
Author(s):  
Vidisha Thakur ◽  
Girish Chandra Pandey ◽  
Jagadish Rane

The contribution of stem water soluble carbohydrates (SWSCs) to grain biomass of wheat ranges from 10 to 20% under irrigated condition and 40 to 60% under stresses such as terminal heat and drought. Genetic variation in SWSC and its mobilization can be useful to increase the grain yield of wheat under harsh environments. Hence, a set of 16 genotypes varying in spike morphology and grain yield was grown in field under timely sown, late sown and terminal drought stress conditions. The anthrone method was used to measure the SWSC concentration in the dried peduncle and penultimate internodes in three replicates at 3 growth stages starting from anthesis. The effect of delay in sowing and terminal drought on the SWSC concentration was significant from anthesis to 14 days after anthesis. Significant genetic variation was observed in the rate of post anthesis change in SWSC during the early grain filling period under the three conditions which partially contributed to the variation in grain yield per spike among the genotypes. Due to sterile florets and/or shorter grain filling duration, all the genotypes did not have a correlation between grain weight per spike and rate of decrease of SWSCs. Thus, our experiments reconfirm the significance of SWSC in present cultivars of wheat and also the scope for exploiting the genetic variation in this trait.


2018 ◽  
Vol 16 (1) ◽  
pp. 62-66
Author(s):  
Md Masudul Karim ◽  
Md Amirul Islam ◽  
Md Rasel Rana ◽  
Md Alamgir Hossain ◽  
Md Abdul Kader

Grain filling determines the grain weight, a major component of grain yield in cereals. Grain filling in barley depends on current assimilation and culm reserves. A pot experiment was conducted at the Grilled House, Department of Crop Botany, Bangladesh Agricultural University, Mymensingh during October 2015–May 2016 to study the grain filling patterns and the contributions of culm reserves to grain yield under drought stress. The experiment consisted of two factors—barley cultivars (six cultivars) and drought stress treatments (control and drought stress). Drought stress was imposed by limiting the irrigation during grain filling period. The tillers were sampled at anthesis, milk-ripe and maturity to determine the changes in dry weights of different parts, viz., leaf lamina, culm with sheath, spikes, and grains; and to examine the contribution of culm reserves to grain yield. The result in this experiment revealed that the grain yield was reduced by 5–25% due to drought stress. The reduction in grain yield was attributable to reduce number of grains per spike and lighter grain weight due to the stress. Drought stress drastically reduced the grain filling duration by about 30% and the stress induced early leaf senescence. Photosynthesis rate and leaf greenness were also reduced in stress. The stress altered the contribution of culm reserves, water soluble carbohydrates (WSCs) in culms to grains. At milk ripe stage, accumulation reached its peak. It accumulated 29.0 to 70.0 mg and from 15.8 to 40.6 mg culm−1 in control and stressed plants, respectively. The residual culm WSCs ranged from 3.5 to 11.2 mg and 1.0 to 3.5 mg culm−1 under control and stress conditions, respectively. The highest contribution of culm WSCs to grain yield was observed in BARI barley2 and the lowest was in BARI barley5 both in control and stress condition. Among the cultivars studied, BARI barley2 produced higher yield with the higher contribution of culm reserves to grain yield under the drought stress.J. Bangladesh Agril. Univ. 16(1): 62-66, April 2018


Sign in / Sign up

Export Citation Format

Share Document