Effects of different temperature regimes on flower development, microsporogenesis and fertility in bolting garlic (Allium sativum)

2015 ◽  
Vol 42 (6) ◽  
pp. 514 ◽  
Author(s):  
Einat Shemesh Mayer ◽  
Tomer Ben-Michael ◽  
Sagie Kimhi ◽  
Itzhak Forer ◽  
Haim D. Rabinowitch ◽  
...  

Garlic (Allium sativum L.) cultivars do not develop fertile flowers and seeds. Therefore, garlic production and improvement depend exclusively on vegetative propagation. Recent advances in garlic research have enabled fertility restoration and the discovery of fertile and male-sterile genotypes; however, the environmental regulation of the reproductive process is still not clear. Garlic seeds are successfully produced in the Mediterrenean region, where the photoperiod is relatively short, whereas spring and summer temperatures are high. We hypothesise that, in bolting garlic, various stages of florogenesis are differentially regulated by temperature and that high temperatures might obstruct pollen production. The effects of eight combinations of controlled growth temperatures on fertile and male-sterile garlic clones were studied. In both genotypes, a gradual temperature increase before and during anthesis favoured intact flower development. Surprisingly, continuous exposure to moderate temperatures during the entire growth period resulted in poor flowering, anther abortion and reduced pollen production. In the male-sterile genotype, no growth regime improved pollen production, which is controlled by genetic mechanisms. In the male-fertile genotype, gradual temperature increase supported pollen production but a sharp transition to high temperatures resulted in rapid flower senescence and pollen abortion, thus supporting our research hypothesis. In both fertile and male-sterile plants, the most vulnerable phase of microsporogenesis is the unicellular microspore stage. Tapetal malformation is the major cause for malnutrition of the microspores, with consequent production of nonviable pollen grains.

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1039B-1039
Author(s):  
Barbara C. Hellier ◽  
Marie Pavelka

The USDA garlic (Allium sativum and Allium longicuspis) collection is maintained at the ARS, Western Regional Plant Introduction Station (WRPIS) in Pullman, Wash. This collection comprises 269 accessions, of which 153 are hardneck (flower producing) types. The fertility characteristics of these accessions was evaluated in the field at Pullman, Wash. After the spathes opened, bulbils were removed from all the evaluated accessions to facilitate flower development. The umbel and flower characteristics taken were anther color, flower color, flower shape, stigma position, flowers per umbel, umbel diameter, umbel shape, umbel defects, bulbil size, bulbil color, ease of bulbil removal, spathe opening, pollen production, and pollen viability. Of the 153 accessions, 10 produced only partial scapes with bulbils midstalk and no seed production capability. Viable pollen was shed in 85 accessions with viability ranging from 8% to 85%. Open-pollinated seed was generated by 19 of the Pullman, Wash., grown accessions. Seed production was low with yields from 6 to 91 seeds per accession.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 543c-543
Author(s):  
Ami N. Erickson ◽  
Albert H. Markhart

Fruit yield reduction due to high temperatures has been widely observed in Solanaceous crops. Our past experiments have demonstrated that Capsicum annuum cultivars Ace and Bell Boy completely fail to produce fruit when grown at constant 33 °C. However, flowers are produced, continually. To determine which stages of flower development are sensitive to high temperatures, pepper buds, ranging in size from 1 mm to anthesis, were exposed to high temperatures for 6 hr, 48 hr, 5 days, or for the duration of the experiment. Fruit set for each bud size was determined. Exposure to high temperatures at anthesis and at the 2-mm size stage for 2 or more days significantly reduced fruit production. To determine whether inhibition of pollination, inhibition of fertilization, and/or injury to the female or male structures prevents fruit production at high temperatures, flowers from pepper cultivars Ace and Bell Boy were grown until flowers on the 8th or 9th node were 11 mm in length. Plants were divided between 25 °C and 33 °C constant growth chambers for 2 to 4 days until anthesis. At anthesis, flowers from both treatments were cross-pollinated in all combination, and crosses were equally divided between 33 or 25 °C growth chambers until fruit set or flowers abscised. All flower crosses resulted in 80% to 100% fruit set when post-pollination temperatures were 25 °C. However, post-pollination temperatures of 33 °C significantly reduced fruit production. Reduced fruit set by flowers exposed to high temperatures during anthesis and pollination is not a result of inviable pollen or ovule, but an inhibition of fertilization or initial fruit development.


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1383-1394
Author(s):  
Roger P Wise ◽  
Carren L Dill ◽  
Patrick S Schnable

Abstract Dominant alleles of the rf1 and rf2 nuclear-encoded fertility restorer genes are necessary for restoration of pollen fertility in T-cytoplasm maize. To further characterize fertility restoration mediated by the Rf1 allele, 123,500 gametes derived from plants carrying the Mutator transposable element family were screened for rf1-mutant alleles (rf1-m) Four heritable rf1-m alleles were recovered from these populations. Three rf1-m alleles were derived from the progenitor allele Rf1-IAl53 and one was derived from Rf1-Ky21. Cosegregation analysis revealed 5.5- and 2.4kb Mu1-hybridizing EcoRI restriction fragments in all of the male-sterile and none of the male-fertile plants in families segregating for rf1-m3207 and rf1-m3310, respectively. Mitochondrial RNA gel blot analyses indicated that all four rf1-m alleles in male-sterile plants cosegregated with the altered steady-state accumulation of 1.6 and O.6-kb T-urf13 transcripts, demonstrating that these transcripts are Rf1 dependent. Plants carrying a leaky mutant, rf1-m7323, revealed variable levels of Rf1-associated, T-urf13 transcripts and the degree of pollen fertility. The ability to obtain rf1-m derivatives from Rf1 indicates that Rf1 alleles produce a functional gene product necessary for the accumulation of specific T-urf13 transcripts in T-cytoplasm maize.


Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 383-391 ◽  
Author(s):  
Hoang V Tang ◽  
Ruying Chang ◽  
Daryl R Pring

Abstract Defective nuclear-cytoplasmic interactions leading to aberrant microgametogenesis in sorghum carrying the IS1112C male-sterile cytoplasm occur very late in pollen maturation. Amelioration of this condition, the restoration of pollen viability, involves a novel two-gene gametophytic system, wherein genes designated Rf3 and Rf4 are required for viability of individual gametes. Rf3 is tightly linked to, or represents, a single gene that regulates a transcript processing activity that cleaves transcriptsof orf107, a chimeric mitochondrial open reading frame specific to IS1112C. The mitochondrial gene urf 209 is also subject to nucleus-specific enhanced transcript processing, 5′ to the gene, conferred by a single dominant gene designated Mmt1. Examinations of transcript patterns in F2 and two backcross populations indicated cosegregation of the augmented orf107 and urf209 processing activities in IS1112C. Several sorghum lines that do not restore fertility or confer orf107 transcript processing do exhibit urf209 transcript processing, indicating that the activities are distinguishable. We conclude that the nuclear gene(s) conferring enhanced orf107 and urf209 processing activities are tightly linked in IS1112C. Alternatively, the similarity in apparent regulatory action of the genes may indicate allelic differences wherein the IS1112C Rf3 allele may differ from alleles of maintainer lines by the capability to regulate both orf107 and urf209 processing activities.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1317-1328
Author(s):  
Anita A de Haan ◽  
Hans P Koelewijn ◽  
Maria P J Hundscheid ◽  
Jos M M Van Damme

Male fertility in Plantago lanceolata is controlled by the interaction of cytoplasmic and nuclear genes. Different cytoplasmic male sterility (CMS) types can be either male sterile or hermaphrodite, depending on the presence of nuclear restorer alleles. In three CMS types of P. lanceolata (CMSI, CMSIIa, and CMSIIb) the number of loci involved in male fertility restoration was determined. In each CMS type, male fertility was restored by multiple genes with either dominant or recessive action and capable either of restoring male fertility independently or in interaction with each other (epistasis). Restorer allele frequencies for CMSI, CMSIIa and CMSIIb were determined by crossing hermaphrodites with “standard” male steriles. Segregation of male steriles vs. non-male steriles was used to estimate overall restorer allele frequency. The frequency of restorer alleles was different for the CMS types: restorer alleles for CMSI were less frequent than for CMSIIa and CMSIIb. On the basis of the frequencies of male steriles and the CMS types an “expected” restorer allele frequency could be calculated. The correlation between estimated and expected restorer allele frequency was significant.


2021 ◽  
Vol 22 (13) ◽  
pp. 6877
Author(s):  
Yannan Shi ◽  
Yao Li ◽  
Yongchao Guo ◽  
Eli James Borrego ◽  
Zhengyi Wei ◽  
...  

Recently, crop breeders have widely adopted a new biotechnology-based process, termed Seed Production Technology (SPT), to produce hybrid varieties. The SPT does not produce nuclear male-sterile lines, and instead utilizes transgenic SPT maintainer lines to pollinate male-sterile plants for propagation of nuclear-recessive male-sterile lines. A late-stage pollen-specific promoter is an essential component of the pollen-inactivating cassette used by the SPT maintainers. While a number of plant pollen-specific promoters have been reported so far, their usefulness in SPT has remained limited. To increase the repertoire of pollen-specific promoters for the maize community, we conducted a comprehensive comparative analysis of transcriptome profiles of mature pollen and mature anthers against other tissue types. We found that maize pollen has much less expressed genes (>1 FPKM) than other tissue types, but the pollen grain has a large set of distinct genes, called pollen-specific genes, which are exclusively or much higher (100 folds) expressed in pollen than other tissue types. Utilizing transcript abundance and correlation coefficient analysis, 1215 mature pollen-specific (MPS) genes and 1009 mature anther-specific (MAS) genes were identified in B73 transcriptome. These two gene sets had similar GO term and KEGG pathway enrichment patterns, indicating that their members share similar functions in the maize reproductive process. Of the genes, 623 were shared between the two sets, called mature anther- and pollen-specific (MAPS) genes, which represent the late-stage pollen-specific genes of the maize genome. Functional annotation analysis of MAPS showed that 447 MAPS genes (71.7% of MAPS) belonged to genes encoding pollen allergen protein. Their 2-kb promoters were analyzed for cis-element enrichment and six well-known pollen-specific cis-elements (AGAAA, TCCACCA, TGTGGTT, [TA]AAAG, AAATGA, and TTTCT) were found highly enriched in the promoters of MAPS. Interestingly, JA-responsive cis-element GCC box (GCCGCC) and ABA-responsive cis-element-coupling element1 (ABRE-CE1, CCACC) were also found enriched in the MAPS promoters, indicating that JA and ABA signaling likely regulate pollen-specific MAPS expression. This study describes a robust and straightforward pipeline to discover pollen-specific promotes from publicly available data while providing maize breeders and the maize industry a number of late-stage (mature) pollen-specific promoters for use in SPT for hybrid breeding and seed production.


2011 ◽  
Vol 24 (1) ◽  
pp. 33-40
Author(s):  
M. J. Hasan ◽  
M. U. Kulsum ◽  
A. Ansari ◽  
A. K. Paul ◽  
P. L. Biswas

Inheritance of fertility restoration was studied in crosses involving ten elite restorer lines of rice viz. BR6839-41-5-1R, BR7013-62-1-1R, BR7011-37-1-2R, BR10R, BR11R, BR12R, BR13R, BR14R, BR15R and BR16R and one male sterile line Jin23A with WA sources of cytoplasmic male sterility. The segregation pattern for pollen fertility of F2 and BC1 populations of crosses involving Jin23A indicated the presence of two independent dominant fertility restoring genes. The mode of action of the two genes varied in different crosses revealing three types of interaction, i.e. epistasis with dominant gene action, epistasis with recessive gene action, and epistasis with incomplete dominance.DOI: http://dx.doi.org/10.3329/bjpbg.v24i1.16997


2008 ◽  
Vol 59 (3) ◽  
pp. 206 ◽  
Author(s):  
A. C. Martín ◽  
S. G. Atienza ◽  
M. C. Ramírez ◽  
F. Barro ◽  
A. Martín

We report a new cytoplasmic male sterility (CMS) source in bread wheat (Triticum aestivum L.) designated as msH1. CMS has been identified during the process of obtaining alloplasmic bread wheat in different Hordeum chilense Roem. Schultz. cytoplasms. It was observed that when using the H. chilense H1 accession, the corresponding alloplasmic line was male sterile. This alloplasmic wheat is stable under different environmental conditions and it does not exhibit developmental or floral abnormalities, showing only slightly reduced height and some delay in heading. On examining microsporogenesis in the alloplasmic line, it was found that different stages of meiosis were completed normally, but abnormal development occurred at the uninucleate-pollen stage at the first mitosis, resulting in failure of anther exertion and pollen abortion. Fertility restoration of the CMS phenotype caused by the H. chilense cytoplasm was associated with the addition of chromosome 6HchS from H. chilense accession H1. Thus, some fertility restoration genes appear to be located in this chromosome arm. Considering the features displayed by the msH1 system, we consider that it has a great potential for the development of viable technology for hybrid wheat production.


1979 ◽  
Vol 21 (3) ◽  
pp. 417-422 ◽  
Author(s):  
G. J. Scoles ◽  
L. E. Evans

Three inbred lines of rye (Secale cereale L.) known to be capable of restoring fertility to a cytoplasmic male-sterile line were crossed with the sterile line. The proportions of male fertile, partially male fertile and male sterile plants in F2 and backcross progenies indicated that three dominant restorer genes were present in each line. These were designated Rf1, Rf2 and Rf3, their relative expressivity was Rf1>Rf2>Rf3. Expressivity was dependent upon environment. Partial fertility occurred when certain genotypes carried two of the three alleles as dominant, but was dependent upon genotype and environment.


Sign in / Sign up

Export Citation Format

Share Document