Physiological factors determine the accumulation of D-glycero-D-ido-octulose (D-g-D-i-oct) in the desiccation tolerant resurrection plant Craterostigma plantagineum

2016 ◽  
Vol 43 (7) ◽  
pp. 684 ◽  
Author(s):  
Qingwei Zhang ◽  
Dorothea Bartels

The relationship between the accumulation of D-glycero-D-ido-octulose (D-g-D-i-oct) and sucrose and desiccation tolerance was analysed in leaves of Craterostigma plantagineum Hochst. in various conditions. The D-g-D-i-oct level is strictly controlled in C. plantagienum. Light is an important factor enhancing D-g-D-i-oct synthesis when exogenous sucrose is supplied. Desiccation tolerance is lost during natural senescence and during sugar starvation that leads to senescence. The differences in expression patterns of senescence-related genes and the carbohydrate status between vigorous and senescent plants indicate that desiccation tolerance and accumulation of octulose in C. plantagineum is dependent on the developmental stage. Sucrose synthesis is affected more by dehydration than by senescence. D-g-D-i-oct has superior hydroxyl scavenging ability to other common sugars accumulating in C. plantagineum. In the presence of reactive oxygen species (ROS) D-g-D-i-oct levels decreased, probably as a defence reaction.

2020 ◽  
Vol 27 ◽  
Author(s):  
Xinrui Li ◽  
Liang Ma ◽  
Ping Fu

: Mitochondria are potent source of cellular reactive oxygen species (ROS) and are vulnerable to oxidative damage. Mitochondria dysfunction could result in adenosine triphosphate (ATP) decrease and cell death. The kidney is an ATPconsuming organ, and the relationship between mitochondrial dysfunction and renal disease has been long noted. Mitochondrial targeting is a novel strategy for kidney diseases. At present, there are several ways to target mitochondria such as the addition of a triphenylphosphonium cation, mitochondria-targeted peptides, and nanocarrier. There are also a variety of choices for the payload, such as nitroxides, quinone derivates, vitamins and so on. This review summarized chemical and also clinical characteristics of various mitochondria-targeted antioxidants and focused on their application and perspectives in kidney diseases.


1989 ◽  
Vol 10 (3) ◽  
pp. 214-220 ◽  
Author(s):  
R. JOHN AITKEN ◽  
JANE S. CLARKSON ◽  
TIMOTHY B. HARGREAVE ◽  
D. STEWART IRVINE ◽  
FREDERICK C. W. WU

2021 ◽  
Vol 22 (23) ◽  
pp. 12942
Author(s):  
Chanjuan Ye ◽  
Shaoyan Zheng ◽  
Dagang Jiang ◽  
Jingqin Lu ◽  
Zongna Huang ◽  
...  

Programmed cell death (PCD) plays crucial roles in plant development and defence response. Reactive oxygen species (ROS) are produced during normal plant growth, and high ROS concentrations can change the antioxidant status of cells, leading to spontaneous cell death. In addition, ROS function as signalling molecules to improve plant stress tolerance, and they induce PCD under different conditions. This review describes the mechanisms underlying plant PCD, the key functions of mitochondria and chloroplasts in PCD, and the relationship between mitochondria and chloroplasts during PCD. Additionally, the review discusses the factors that regulate PCD. Most importantly, in this review, we summarise the sites of production of ROS and discuss the roles of ROS that not only trigger multiple signalling pathways leading to PCD but also participate in the execution of PCD, highlighting the importance of ROS in PCD.


2018 ◽  
Vol 40 (5-6) ◽  
pp. 382-395 ◽  
Author(s):  
Leslie Magtanong ◽  
Scott J. Dixon

Ferroptosis is a nonapoptotic form of cell death characterized by the iron-dependent accumulation of toxic lipid reactive oxygen species. Small-molecule screening and subsequent optimization have yielded potent and specific activators and inhibitors of this process. These compounds have been employed to dissect the lethal mechanism and implicate this process in pathological cell death events observed in many tissues, including the brain. Indeed, ferroptosis is emerging as an important mechanism of cell death during stroke, intracerebral hemorrhage, and other acute brain injuries, and may also play a role in certain degenerative brain disorders. Outstanding issues include the practical need to identify molecular markers of ferroptosis that can be used to detect and study this process in vivo, and the more basic problem of understanding the relationship between ferroptosis and other forms of cell death that can be triggered in the brain during injury.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 257
Author(s):  
Qiang Li ◽  
Hélène San Clemente ◽  
Yongrui He ◽  
Yongyao Fu ◽  
Christophe Dunand

Eucalyptus is a worldwide hard-wood species which increasingly focused on. To adapt to various biotic and abiotic stresses, Eucalyptus have evolved complex mechanisms, increasing the cellular concentration of reactive oxygen species (ROS) by numerous ROS controlling enzymes. To better analyse the ROS gene network and discuss the differences between four Eucalyptus species, ROS gene network including 11 proteins families (1CysPrx, 2CysPrx, APx, APx-R, CIII Prx, Diox, GPx, Kat, PrxII, PrxQ and Rboh) were annotated and compared in an expert and exhaustive manner from the genomic data available from E. camaldulensis, E. globulus, E. grandis, and E. gunnii. In addition, a specific sequencing strategy was performed in order to determine if the missed sequences in at least one organism are the results of gain/loss events or only sequencing gaps. We observed that the automatic annotation applied to multigenic families is the source of miss-annotation. Base on the family size, the 11 families can be categorized into duplicated gene families (CIII Prx, Kat, 1CysPrx, and GPx), which contain a lot of gene duplication events and non-duplicated families (APx, APx-R, Rboh, DiOx, 2CysPrx, PrxII, and PrxQ). The gene family sizes are much larger in Eucalyptus than most of other angiosperms due to recent gene duplications, which could give higher adaptability to environmental changes and stresses. The cross-species comparative analysis shows gene gain and loss events during the evolutionary process. The 11 families possess different expression patterns, while in the Eucalyptus genus, the ROS families present similar expression patterns. Overall, the comparative analysis might be a good criterion to evaluate the adaptation of different species with different characters, but only if data mining is as exhaustive as possible. It is also a good indicator to explore the evolutionary process.


2007 ◽  
Vol 34 (7) ◽  
pp. 601 ◽  
Author(s):  
Stanislawa Pukacka ◽  
Ewelina Ratajczak

The ascorbate–glutathione system was studied during development and desiccation of seeds of two Acer species differing in desiccation tolerance: Norway maple (Acer platanoides L., orthodox) and sycamore (Acer pseudoplatanus L., recalcitrant). The results showed remarkable differences in the concentration and redox balance of ascorbate and glutathione between these two kinds of seeds during development, and a significant dependence between glutathione content and acquisition of desiccation tolerance in Norway maple seeds. There were relatively small differences between the species in the activities of enzymes of the ascorbate–glutathione cycle: ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.6.4.2). At the end of seed maturation, ascorbic acid content and the activities of the above enzymes was about the same in both species The electrophoretic pattern of APX isoenzymes was also similar for both species, and the intensity of the bands decreased at the end of seed maturation in both species. When sycamore seeds were desiccated to a moisture content of less than 26%, there was a marked decrease in seed viability and an increase in the production of reactive oxygen species. During desiccation, Norway maple seeds had a more active defence system, which was reflected in a higher glutathione content, a higher glutathione redox status, a higher ascorbate redox status, and higher activities of APX, MR, DHAR, GR and GPX (glutathione peroxidase). During desiccation, sulfhydryl-to-disulfide transition into proteins was more intense in Norway maple seeds than sycamore seeds. All of these results suggest that, in orthodox seeds, the ascorbate–glutathione cycle plays an important role in the acquisition of tolerance to desiccation, in protein maturation, and in protection from reactive oxygen species.


2003 ◽  
Vol 284 (1) ◽  
pp. H299-H308 ◽  
Author(s):  
Gilles Lebuffe ◽  
Paul T. Schumacker ◽  
Zuo-Hui Shao ◽  
Travis Anderson ◽  
Hirotoro Iwase ◽  
...  

Reactive oxygen species (ROS) and nitric oxide (NO) are implicated in induction of ischemic preconditioning. However, the relationship between these oxidant signals and opening of the mitochondrial ATP-dependent potassium (KATP) channel during early preconditioning is not fully understood. We observed preconditioning protection by hypoxia, exogenous H2O2, or PKC activator PMA in cardiomyocytes subjected to 1-h ischemia and 3-h reperfusion. Protection was abolished by KATP channel blocker 5-hydroxydecanoate (5-HD) in each case, indicating that these triggers must act upstream from the KATP channel. Inhibitors of NO synthase abolished protection in preconditioned cells, suggesting that NO is also required for protection. DAF-2 fluorescence (NO sensitive) increased during hypoxic triggering. This was amplified by pinacidil and inhibited by 5-HD, indicating that NO is generated subsequent to KATP channel activation. Exogenous NO during the triggering phase conferred protection blocked by 5-HD. Exogenous NO also restored protection abolished by 5-HD or N ω-nitro-l-arginine methyl ester in preconditioned cells. Antioxidants given during pinacidil or NO triggering abolished protection, confirming that ROS are generated by KATP channel activation. Coadministration of H2O2 and NO restored PMA-induced protection in 5-HD-treated cells, indicating that ROS and NO are required downstream from the KATP channel. We conclude that ROS can trigger preconditioning by causing activation of the KATP channel, which then induces generation of ROS and NO that are both required for preconditioning protection.


1997 ◽  
Vol 17 (6) ◽  
pp. 557-567 ◽  
Author(s):  
Zhi-wei Yang ◽  
Fu-yu Yang

The relationship between Ca2+ transport and energy transduction of myocardial mitochondria in the presence of reactive oxygen species was investigated. Following treatment with oxygen free radicals [superoxide(O2•) or hydroxyl radical (•)OH], lipid free radicals in myocardial mitochondrial membrane could be detected by using the method of EPR spin trap. Simultaneously there were obvious alterations in the free Ca2+ ([Ca2+]m) in the mitochondrial matrix; the physical state of membrane lipid; the efficiency of oxidative phosphorylation (ADP/O); the value of the respiratory control ratio (RCR); and the membrane potential of the inner membrane of myocardial mitochondria. If the concentrations of reactive oxygen species were reduced by about 30%, the alterations in the physical state of the membrane lipid and energy transduction of myocardial mitochondria were not observed, but the changes in Ca2+ homeostasis remained. We conclude that Ca2+ transport by myocardial mitochondria is more sensitive to agents such as (O2•) or •OH, etc. than are oxidation phosphorylation and the respiratory chain.


Sign in / Sign up

Export Citation Format

Share Document