scholarly journals Rapid changes in root HvPIP2;2 aquaporins abundance and ABA concentration are required to enhance root hydraulic conductivity and maintain leaf water potential in response to increased evaporative demand

2018 ◽  
Vol 45 (2) ◽  
pp. 143 ◽  
Author(s):  
Dmitry S. Veselov ◽  
Guzel V. Sharipova ◽  
Stanislav Yu. Veselov ◽  
Ian C. Dodd ◽  
Igor Ivanov ◽  
...  

To address the involvement of abscisic acid (ABA) in regulating transpiration and root hydraulic conductivity (LpRoot) and their relative importance for maintaining leaf hydration, the ABA-deficient barley mutant Az34 and its parental wild-type (WT) genotype (cv. Steptoe) were grown in hydroponics and exposed to changes in atmospheric vapour pressure deficit (VPD) imposed by air warming. WT plants were capable of maintaining leaf water potential (ψL) that was likely due to increased LpRoot enabling higher water flow from the roots, which increased in response to air warming. The increased LpRoot and immunostaining for HvPIP2;2 aquaporins (AQPs) correlated with increased root ABA content of WT plants when exposed to increased air temperature. The failure of Az34 to maintain ψL during air warming may be due to lower LpRoot than WT plants, and an inability to respond to changes in air temperature. The correlation between root ABA content and LpRoot was further supported by increased root hydraulic conductivity in both genotypes when treated with exogenous ABA (10−5 M). Thus the ability of the root system to rapidly regulate ABA levels (and thence aquaporin abundance and hydraulic conductivity) seems important to maintain leaf hydration.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 439g-440
Author(s):  
M. Rieger

Root hydraulic conductivity (Lp) and osmotic potential (π) were measured in young, drought-stressed and non-stressed peach (Prunus persica), Olive (Olea europea), Citrumelo (Citrus paradisi x Poncirus trifoliata) and Pistachio (Pistachia integerrima) plants. Drought stress reduced Lp 2.5 to 4.2-fold, depending on species, but π was reduced only in expanded citrumelo leaves and unexpanded olive leaves by 0.34 and 1.4 MPa, respectively. A simulation model of plant water uptake and leaf water relations was constructed to quantify the offsetting effects of reduced Lp and osmotic adjustment (OA) on turgor maintenance. For olive data, a 2.5-fold reduction of Lp caused a linear decrease in turgor pressure difference between stressed and non-stressed plants, such that the effect of OA was totally offset at a leaf water potential (stressed) of ≈ -3.0 MPa. For citrumelo, because the degree of OA was lower, the water potential at which the effects of OA and reduced Lp were offsetting with respect to turgor maintenance was ≈ -0.6 MPa. The analysis suggests that some level of stomatal closure would be necessary to extend the water potential range over which stressed plants maintain higher turgor than non-stressed plants for citrumelo. Conversely, no degree of stomatal closure would be required of stressed olive plants to maintain higher turgor than non-stressed counterparts over a physiologically meaningful range of leaf water potential.


1993 ◽  
Vol 62 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Tohru KOBATA ◽  
Kenji SHIONO ◽  
Toshiaki TAKEI ◽  
Atushi KATUBE ◽  
Shinichiro UTAKA ◽  
...  

2021 ◽  
Author(s):  
Fabian Wankmüller ◽  
Mohsen Zarebanadkouki ◽  
Andrea Carminati

<p>Predicting plant responses to drought is a long-standing research goal. Since stomata regulate gas-exchange between plants and the atmosphere, understanding their response to drought is fundamental. Current predictions of stomatal behavior during drought mainly rely on empirical models. These models may suit well to a specific set of plant traits and environmental growth conditions, but their predictive value is doubtful when atmospheric and soil conditions change. Stomatal optimization offers an alternative framework to predict stomatal regulation in response to drought for varying environmental conditions and plant traits. Models which apply this optimization principle posit that stomata maximize the carbon gain in relation to a penalty caused by water loss, such as xylem cavitation. Optimization models have the advantage of requiring a limited number of parameters and have been successfully used to predict stomatal response to drought for varying environmental conditions and species. However, a mechanism that enables stomata to optimally close in response to water limitations, and more precisely to a drop in the ability of the soil-plant continuum to sustain the transpiration demand, is not known. Here, we propose a model of stomatal regulation that is linked to abscisic acid (ABA) dynamics (production, degradation and transport) and that allows plants to avoid excessive drops in leaf water potential during soil drying and increasing vapor pressure deficit (VPD). The model assumes that: 1) stomatal conductance (g<sub>s</sub>) decreases when ABA concentration close to the guard cells (C<sub>ABA</sub>) increases; 2) C<sub>ABA</sub> increases with decreasing leaf water potential (due to higher production); and 3) C<sub>ABA</sub> decreases with increasing photosynthesis (e.g. due to faster degradation or transport to the phloem). Our model includes simulations of leaf water potential based on transpiration rate, soil water potential and variable hydraulic conductances of key elements (rhizosphere, root and xylem), and a function linking stomatal conductance to assimilation. It was tested for different soil properties and VPD. The model predicts that stomata close when the relation between assimilation and leaf water potential becomes nonlinear. In wet soil conditions and low VPD, when there is no water limitation, this nonlinearity is controlled by the relation between stomatal conductance and assimilation. In dry soil conditions, when the soil hydraulic conductivity limits the water supply, nonlinearity is controlled by the excessive drop of leaf water potential for increasing transpiration rates. The model predicts different relations between stomatal conductance and leaf water potential for varying soil properties and VPD. For instance, the closure of stomata is more abrupt in sandy soil, reflecting the steep decrease in hydraulic conductivity of sandy soils. In summary, our model results in an optimal behavior, in which stomatal closure avoids excessive (nonlinear) decrease in leaf water potential, similar to other stomatal optimization models. As based on ABA concentration which increases with decreasing leaf water potential but declines with assimilation, this model is a preliminary attempt to link optimization models to a physiological mechanism.</p>


2020 ◽  
Author(s):  
Thomas N. Buckley

SummaryResearch conductedPhotosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential.MethodsIn a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum.Key resultsThe model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation-driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal.ConclusionThe Cowan-Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon-water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 798D-798
Author(s):  
M. Raeini-Sarjaz ◽  
N.N. Barthakur

Paraheliotropic leaf movements of bush bean were studied in relation to water availability, ambient temperature, leaf water potential, and stomatal conductance in a growth chamber. Unifoliate leaf angle from the horizontal (LA), stomatal conductance (G), and leaf water potential (WP) were measured at noon to minimize the effect of leaf movements due to circadian rhythm. Photoperiod and light intensity on the foliage were kept constant at 14 h, and 200 μmol·m–2·s–1, respectively, throughout the measurements. Negative correlations were obtained between water availability (WA) and LA (R = –0.93), and WP and LA (R = –0.85), whereas positive correlations were shown between WA and WP (R = 0.90), WA and G (R = 0.90), and WP and G (0.84) at 35C air temperature. Similar correlations were observed at 25C between WA and LA (R = –0.91), WP and LA (R = –0.79), WA and WP (R = 0.91), WA and G (R = 0.68), and WP and G (R = 0.76). Air temperature significantly (P ≤ 0.01) affected leaf movements.


Attempts to correlate values of stomatal conductance and leaf water potential with particular environmental variables in the field are generally of only limited success because they are simultaneously affected by a number of environmental variables. For example, correlations between leaf water potential and either flux of radiant energy or vapour pressure deficit show a diurnal hysteresis which leads to a scatter diagram if many values are plotted. However, a simple model may be adequate to relate leaf water potential to the flow of water through the plant. The stomatal conductance of illuminated leaves is a function of current levels of temperature, vapour pressure deficit, leaf water potential (really turgor pressure) and ambient CO 2 concentration. Consequently, when plotted against any one of these variables a scatter diagram results. Physiological knowledge of stomatal functioning is not adequate to provide a mechanistic model linking stomatal conductance to all these variables. None the less, the parameters describing the relationships with the variables can be conveniently estimated from field data by a technique of non-linear least squares, for predictive purposes and to describe variations in response from season to season and plant to plant.


Sign in / Sign up

Export Citation Format

Share Document