Molecular characterisation and expression analysis of NAC transcription factor genes in wild Medicago falcata under abiotic stresses

2020 ◽  
Vol 47 (4) ◽  
pp. 327
Author(s):  
Liquan Zhang ◽  
Xuhui Jia ◽  
Jingwei Zhao ◽  
Agula Hasi ◽  
Yiding Niu

The No apical meristem–Arabidopsis transcription activation factor–Cup-shaped cotyledon (NAC) proteins play vital roles in plant development processes and responses to abiotic stress. In this study, 146 unigenes were identified as NAC genes from wild Medicago falcata L. by RNA sequencing. Among these were 30 full-length NACs, which, except for MfNAC63, MfNAC64 and MfNAC91, contained a complete DNA-binding domain and a variable transcriptional activation region. Sequence analyses of MfNACs along with their Arabidopsis thaliana (L.) Heynh. counterparts allowed these proteins to be phylogenetically classified into nine groups. MfNAC35, MfNAC88, MfNAC79, MfNAC26 and MfNAC95 were found to be stress-responsive genes. The eight MfNAC genes that were chosen for further analysis had different expression abilities in the leaves, stems and roots of M. falcata. Additionally, their expression levels were regulated by salinity, drought and cold stress, and ABA. This study will be useful for understanding the roles of MfNACs in wild M. falcata and could provide important information for the selection of candidate genes associated with stress tolerance.

2015 ◽  
Vol 465 (2) ◽  
pp. 281-294 ◽  
Author(s):  
Charlotte O’Shea ◽  
Mikael Kryger ◽  
Emil G. P. Stender ◽  
Birthe B. Kragelund ◽  
Martin Willemoës ◽  
...  

The regulatory domains of NAC [no apical meristem, ATAF (Arabidopsis transcription activation factor), cup-shaped cotyledon] transcription factors (TFs) are mostly disordered. The single molecular recognition feature (MoRF) in ANAC046 (Arabidopsis NAC domain containing protein 46) is a functional hot spot mediating interactions with RCD1 (radical-induced cell death 1), a stress-associated hub which exploits disorder and different mechanisms for interactions.


i-com ◽  
2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Holger Fischer ◽  
Michaela Kauer-Franz ◽  
Dominique Winter ◽  
Stefan Latt

AbstractThe establishment of human-centered design within software development processes is still a challenge. Numerous methods exist that aim to increase the usability and user experience of an interactive system. Nevertheless, the selection of appropriate methods remains to be challenging, as there are multiple different factors that have a significant impact on the appropriateness of the methods in their context of use. The present article investigates current strategies of method selection based on a conference workshop with practitioners. The results show that usability and user experience professionals concentrate on five to seven well-known methods and will need more support to select and use further ones.


2020 ◽  
Vol 29 (1) ◽  
pp. 65
Author(s):  
José A. Gómez-Limón ◽  
Julia Martin-Ortega

Water is a natural resource that performs different functions in development processes (satisfaction of population’s basic needs, key element for ecosystems and landscapes, input in different economic activities, etc.). Taking into account this relevance and its features as an economic good, public authorities have carried out an important role as regulators. The last milestone in this path has been the approval of the Water Framework Directive. One of the most innovative points of this European rule is the use of economic analysis for the optimisation of different water uses. However, the development of the works done for the design of the new water management plans has shown several shortcomings regarding the economic analysis of water uses, the analysis of costs recovery for water services and the selection of meassures to reach these objectives. In this sense it is necessary to strength the nexus between the policy- making and academic spheres in order to support a more rigorous and effective use of the large scientific knowledge developed in this field.


2021 ◽  
Author(s):  
Pavithra Anantharaman Sudhakari ◽  
Bhaskar Chandra Mohan Ramisetty

Plasmids are acellular propagating entities that depend, as molecular parasites, on bacteria for propagation. The conflict between the bacterial genome and the parasitic plasmids allows the emergence of genetic arms such as Colicin (Col) operons. Endonuclease Col operons encode three proteins; an endonuclease colicin (cleaves nucleic acids), an immunity protein (inactivates its cognate colicin), and lysis protein (aids in colicin release via host cell lysis). Col operons are efficient plasmid-maintenance systems; (i) the plasmid cured cells are killed by the colicins; (ii) damaged cells lyse and releases the colicins that eliminate the competitors; and (iii) the released plasmids invade new bacteria. Surprisingly, some bacterial genomes have Col operons. The eco-evolutionary drive and physiological relevance of genomic Col operons are unknown. We investigated plasmidic and genomic Col operons using sequence analyses from an eco-evolutionary perspective. We found 1,248 genomic and plasmidic colicins across 30 bacterial genera. Although 51% of the genomes harbor colicins, the majority of the genomic colicins lacked a functional lysis gene, suggesting the negative selection of lethal genes. The immunity gene of the Col operon protects the cured host thereby eliminating the metabolic burden due to plasmid. We show mutual exclusivity of col operons on genomes and plasmids. We propose anti-addiction hypothesis for genomic colicins. Using a stochastic agent-based model, we show that the genomic colicins confer an advantage to the host genome in terms of immunity to the toxin and elimination of plasmid burden. Col operons are genetic arms that regulate the ecological interplay of bacterial genomes and plasmids.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Xu ◽  
Juhua Liu ◽  
Caihong Jia ◽  
Wei Hu ◽  
Shun Song ◽  
...  

Aquaporins can improve the ability of plants to resist abiotic stresses, but the mechanism is still not completely clear. In this research, overexpression of MaPIP1;1 in banana improved tolerance to multiple stresses. The transgenic plants resulted in lower ion leakage and malondialdehyde content, while the proline, chlorophyll, soluble sugar, and abscisic acid (ABA) contents were higher. In addition, under high salt and recovery conditions, the content of Na+ and K+ is higher, also under recovery conditions, the ratio of K+/Na+ is higher. Finally, under stress conditions, the expression levels of ABA biosynthesis and response genes in the transgenic lines are higher than those of the wild type. In previous studies, we proved that the MaMADS3 could bind to the promoter region of MaPIP1;1, thereby regulating the expression of MaPIP1;1 and affecting the drought tolerance of banana plants. However, the mechanism of MaPIP1;1 gene response to stress under different adversity conditions might be regulated differently. In this study, we proved that some transcription factor genes, including MaERF14, MaDREB1G, MaMYB1R1, MaERF1/39, MabZIP53, and MaMYB22, showed similar expression patterns with MaPIP1;1 under salt or cold stresses, and their encoded proteins could bind to the promoter region of MaPIP1;1. Here we proposed a novel MaPIP1;1-mediated mechanism that enhanced salt and cold tolerance in bananas. The results of this study have enriched the stress-resistant regulatory network of aquaporins genes and are of great significance for the development of molecular breeding strategies for stress-resistant fruit crops.


Plant Gene ◽  
2021 ◽  
Vol 28 ◽  
pp. 100334
Author(s):  
S. Sivakumar ◽  
G. Prem Kumar ◽  
S. Vinoth ◽  
G. Siva ◽  
M. Vigneswaran ◽  
...  

2006 ◽  
Vol 84 (4) ◽  
pp. 536-548 ◽  
Author(s):  
Pierre-Marie Dehé ◽  
Vincent Géli

In Saccharomyces cerevisiae, H3 methylation at lysine 4 (H3K4) is mediated by Set1. Set1 is a large protein bearing a conserved RNA recognition motif in addition to its catalytic C-terminal SET domain. The SET and RRM domains are conserved in Set1 orthologs from yeast to humans. Set1 belongs to a complex of 8 proteins, also showing a striking conservation, most subunits being required to efficiently catalyze methylation of H3K4. The deletion of SET1 is not lethal but has pleiotropic phenotypes. It affects growth, transcriptional activation, repression and elongation, telomere length regulation, telomeric position effect, rDNA silencing, meiotic differentiation, DNA repair, chromosome segregation, and cell wall organization. In this review, we discuss the regulation of H3K4 methylation and try to link Set1 activity with the multiple phenotypes displayed by cells lacking Set1. We also suggest that Set1 may have multiple targets.


2002 ◽  
Vol 184 (24) ◽  
pp. 6957-6965 ◽  
Author(s):  
Signe Saumaa ◽  
Andres Tover ◽  
Lagle Kasak ◽  
Maia Kivisaar

ABSTRACT Stationary-phase mutations occur in populations of stressed, nongrowing, and slowly growing cells and allow mutant bacteria to overcome growth barriers. Mutational processes in starving cells are different from those occurring in growing bacteria. Here, we present evidence that changes in mutational processes also take place during starvation of bacteria. Our test system for selection of mutants based on creation of functional promoters for the transcriptional activation of the phenol degradation genes pheBA in starving Pseudomonas putida enables us to study base substitutions (C-to-A or G-to-T transversions), deletions, and insertions. We observed changes in the spectrum of promoter-creating mutations during prolonged starvation of Pseudomonas putida on phenol minimal plates. One particular C-to-A transversion was the prevailing mutation in starving cells. However, with increasing time of starvation, the importance of this mutation decreased but the percentage of other types of mutations, such as 2- to 3-bp deletions, increased. The rate of transversions was markedly elevated in the P. putida MutY-defective strain. The occurrence of 2- to 3-bp deletions required the stationary-phase sigma factor RpoS, which indicates that some mutagenic pathway is positively controlled by RpoS in P. putida.


Sign in / Sign up

Export Citation Format

Share Document