Unprecedented toxic algal blooms impact on Tasmanian seafood industry

2016 ◽  
Vol 37 (3) ◽  
pp. 143 ◽  
Author(s):  
Gustaaf Hallegraeff ◽  
Christopher Bolch

While most microscopic algae provide food for filter-feeding shellfish and larvae of crustaceans and finfish, other so-called Harmful Algal Blooms (HABs) can have negative effects, causing severe economic losses to aquaculture, fisheries and tourism. Of greatest concern to human society are blooms of toxic HAB species that cause illness and death of fish, seabirds and mammals via toxins transferred through the food web. Unprecedented Alexandrium (Dinophyceae) blooms along the East Coast of Tasmania in 2012 and 2015, a previously low biotoxin risk area, led to major impacts on the local oyster, mussel, scallop and rock lobster industries. Four human hospitalisations also occurred from eating wild shellfish.


2021 ◽  
Vol 8 ◽  
Author(s):  
Svetlana Esenkulova ◽  
Karyn D. Suchy ◽  
Rich Pawlowicz ◽  
Maycira Costa ◽  
Isobel A. Pearsall

In British Columbia (BC), harmful algal blooms (HABs) regularly cause severe economic losses through finfish mortalities and shellfish harvest closures due to toxin accumulation, gill damage, or hypoxia. As there is no routine governmental monitoring of HAB phenomena in BC, HAB variability, and its potential links to environmental drivers are not well understood. Here we present results from a well-managed citizen science program which collected an unprecedented 4 year, high-resolution (∼bi-monthly, ∼80 stations) dataset of harmful algae (HA) concentrations and corresponding physical and chemical properties of seawater throughout the Strait of Georgia (SoG), BC. Analysis of this dataset revealed statistically significant interannual and seasonal relationships between environmental drivers and the most common HA taxa: Rhizosolenia setigera, Dictyocha spp., Alexandrium spp., Heterosigma akashiwo, Chaetoceros convolutus, and C. concavicornis. HABs exhibited significant interannual variations; specifically, no HABs were found during the summer of 2015, blooms of Dictyocha occurred in 2016 and 2017, and dense blooms of Heterosigma and Noctiluca occurred in 2018. In addition, HA prevalence corresponded with negative effects observed in local aquaculture facilities where higher toxins concentrations (causing Paralytic and Diarrhetic Shellfish Poisonings) in shellfish flesh were detected during years with greater abundance of Alexandrium and Dinophysis. Furthermore, salmon mass mortality at fish farms corresponded to years with high concentrations of Heterosigma and Dictyocha. As such, these results highlight the need for long-term data to evaluate the potential role of HA as a stressor on the SoG ecosystem.



2019 ◽  
Vol 17 (4) ◽  
pp. 499-516 ◽  
Author(s):  
Christian R. C. Kouakou ◽  
Thomas G. Poder

Abstract Harmful algal blooms (HABs) damage human activities and health. While there is wide literature on economic losses, little is known about the economic impact on human health. In this review, we systematically retrieved papers which presented health costs following exposure to HABs. A systematic review was conducted up to January 2019 in databases such as ScienceDirect and PubMed, and 16 studies were selected. Health costs included healthcare and medication expenses, loss of income due to illness, cost of pain and suffering, and cost of death. Two categories of illness (digestive and respiratory) were considered for health costs. For digestive illness cost, we found $86, $1,015 and $12,605, respectively, for mild, moderate and severe cases. For respiratory illness, costs were $86, $1,235 and $14,600, respectively, for mild, moderate and severe cases. We used Quality-Adjusted Life Years (QALYs) to access the loss of well-being due to illness caused by HABs. We found that breathing difficulty causes the most loss of QALYs, especially in children, with a loss of between 0.16 and 0.771 per child. Having gastroenteritis could cause a loss of between 2.2 and 7.1 QALYs per 1,000 children. Misleading symptoms of illness following exposure to HABs could cause bias in health costs estimations. This article has been made Open Access thanks to the generous support of a global network of libraries as part of the Knowledge Unlatched Select initiative.



2021 ◽  
Author(s):  
Ning Ding ◽  
Wenjun Du ◽  
Yanlou Feng ◽  
Yuhao Song ◽  
Chao Wang ◽  
...  

Abstract Harmful algal blooms have deleterious effects on aquatic ecosystems and human health. The application of algicidal bacteria is a promising and environmentally friendly method of preventing and eradicating harmful algal blooms. In this study, a screen for algicidal agents against harmful algal blooms was used to identify an algicidal bacterial strain isolated from a Karenia mikimotoi culture. Strain O-1 exhibited a strong inhibitory effect on harmful K. mikimotoi and was identified as a Paracoccus species via 16S rRNA gene sequence analysis. This strain killed K. mikimotoi by secreting active algicidal compounds, which were stable at temperatures of -80–121 °C, but these substances were sensitive to strongly acidic conditions. The algicidal properties of strain O-1 against K. mikimotoi were cell density- and time-dependent. No significant changes or negative effects were noted for two other Chlorophyta species, which highlighted the specificity of the studied algicidal substance. Finally, single-factor experiments revealed the optimum growth conditions of strain O-1 under different pH and temperature conditions. Strain O-1 therefore has potential as a bio-agent for reducing the biomass of harmful K. mikimotoi blooms.



Author(s):  
Yulei Zhang ◽  
Dong Chen ◽  
Ning Zhang ◽  
Feng Li ◽  
Xiaoxia Luo ◽  
...  

Harmful algal blooms caused huge ecological damage and economic losses around the world. Controlling algal blooms by algicidal bacteria is expected to be an effective biological control method. The current study investigated the molecular mechanism of harmful cyanobacteria disrupted by algicidal bacteria. Microcystis aeruginosa was co-cultured with Brevibacillus laterosporus Bl-zj, and RNA-seq based transcriptomic analysis was performed compared to M. aeruginosa, which was cultivated separately. A total of 1706 differentially expressed genes were identified, which were mainly involved in carbohydrate metabolism, energy metabolism and amino acid metabolism. In the co-cultured group, the expression of genes mainly enriched in photosynthesis and oxidative phosphorylation were significantly inhibited. However, the expression of the genes related to fatty acid synthesis increased. In addition, the expression of the antioxidant enzymes, such as 2-Cys peroxiredoxin, was increased. These results suggested that B. laterosporus could block the electron transport by attacking the PSI system and complex I of M. aeruginosa, affecting the energy acquisition and causing oxidative damage. This further led to the lipid peroxidation of the microalgal cell membrane, resulting in algal death. The transcriptional analysis of algicidal bacteria in the interaction process can be combined to explain the algicidal mechanism in the future.



2019 ◽  
Vol 70 (6) ◽  
pp. 794 ◽  
Author(s):  
Jin Ho Kim ◽  
Minji Lee ◽  
Young Kyun Lim ◽  
Yun Ji Kim ◽  
Seung Ho Baek

Because the phytoplankton community and blooms are regulated by various environmental factors, it is difficult to define the cause and occurrence of the phenomenon of harmful algal blooms (HABs). This study evaluated the phytoplankton community and occurrence characteristic of HAB species related to coastal environments in South Korea, 2016. In summer, because of strong upwelling event, the surface sweater temperature around Geoje Island was abnormally low (17°C), and an unusual high temperature (29°C) and low salinity (29psu) were measured in offshore area. Diatoms and dinoflagellates showed contrasting occurrences during the survey period. Diatoms were dominant in the inshore area, whereas dinoflagellates occurred in the offshore area. The phytoplankton-community structures were established depending on different hydro-oceanographic characteristics. In statistical analysis, HABs of dinoflagellate Karenia appeared in upwelling areas with a high nutritional content, whereas Gymnodinium, Gyrodinium and Prorocentrum appeared in areas of low nutrients in June, and HAB species showed an equivalent tendency to appear at high water temperature and low saline level in August. Our results indicated that hydro-oceanographic events such as river discharge, current and upwelling play important roles in determining the phytoplankton community and potential occurrence characteristics of HABs in the coastal environment of South Korea.



2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Antonella Costa ◽  
Vincenzina Alio ◽  
Sonia Sciortino ◽  
Luisa Nicastro ◽  
Monica Cangini ◽  
...  

Marine biotoxins can accumulate in filter-feeders bivalve molluscs, that may represent a source of potential health problems being vectors of toxins, that are transferred to humans through their consumption. Harmful Algal Blooms impact on aquaculture may give also economic losses due to temporary closures of contaminated shellfish harvest and marketing. The presence of toxic algae for Paralytic Shellfish Poisoning (PSP), with recurrent toxic blooms of dinoflagellates, such as several Alexandrium species, been known since 2000 in the waters of an Ionian bay of Sicily, the Syracuse harbour, where shellfish farms are located. Our previous works reported in this area the positivity for PSP toxin in mussels (Mytilus galloprovincialis) with saxitoxin concentrations above the limit of the law and the simultaneous presence of toxic species of the genus Alexandrium in the waters. This work reports new recent episodes of algal blooms of Alexandrium minutum in the waters of the Syracuse harbour and PSP toxin contamination in farmed mussels, with values beyond the limits established by law, with the consequent immediate closure of the production area. PSP toxicity was detected with the MBA (Mouse Bioassay) with the confirm carried out with Lawrence method to quantify the total saxitoxin equivalents and characterize the toxic profile. Regular application of the implemented health plan is very important in order to prevent any risk and protect consumer health.



Author(s):  
Magnolia Gricel Salcedo-Garduño ◽  
María del Refugio Castañeda-Chávez ◽  
Fabiola Lango-Reynoso ◽  
Itzel Galaviz-Villa

Harmful algal blooms (HABs) are natural events produced by massive concentration of toxic phytoplankton that can color red, ocher, brown or yellow large extensions of water, its intensity depends on the different species of phytoplankton involved in the proliferation. The spreading of these formations involves an interaction of biological, chemical, meteorological and anthropogenic factors. Several species with potential toxicity have been reported along Mexican coasts, such as Gymnodinium catenatum, Karenia brevis, Pyrodinium bahamense var. compressum. The toxic bloom not only causes an impact during the event, it produces negative effects afterward, such as accumulating deposits of organic matter, alterations of benthic community structure and composition, species presence/absence, and bioaccumulation of toxins in organisms such as bivalve molluscs mainly. Poisoning may occur by consuming contaminated seafood or by direct exposure to aerosols of the toxins, which can provoke diarrhea or even death. Due to the impact of this type of event on the economy, environment and public health, strategies for monitoring, prevention, and systematic mitigation have been implemented for the evaluation of HAB effects. The aim of this review was to determine the state-of-the art of HAB, their reports and effects on the environment and public health in Mexico.



2021 ◽  
Author(s):  
Panagiotis D. Oikonomou ◽  
Asim Zia ◽  
Jory S. Hecht ◽  
Patrick J. Clemins ◽  
Donna M. Rizzo ◽  
...  

<p>Harmful Algal Blooms (HABs) are a major environmental problem worldwide. Apart from their adverse effects on aquatic habitat, and possible economic losses, they also pose a serious threat to public health. Future climatic uncertainties that include possible shifts in patterns of climatic variables are points of concern in terms of how such changes would affect the development, growth, and duration of HABs. Weather whiplash, abrupt dry-to-wet or wet-to-dry condition transitions, is one of these shifts in climatic patterns and despite its potential environmental impacts, few studies have examined the implications of such changes on lake water quality. Lake Champlain, located on the US-Canada border, has repeatedly faced cyanobacterial HABs predominately in its shallow bays. The aim of the current work is to (i) investigate potential changes in the persistence of hydroclimatic variables (precipitation and temperature) and (ii) examine their effects on cyanobacterial HABs in the lake’s shallow Missisquoi Bay. Our approach focuses on short-term persistence (STP) shifts over different timescales (daily, monthly, seasonal, and annual). STP scenarios that capture these plausible shifts are constructed using projected climate scenarios for the period 2000-2040. An Integrated Assessment Model that simulates the Missisquoi Basin’s physical processes, including watershed hydrology, management, and the Missisquoi Bay’s water quality dynamics, is utilized to run the modeled STP scenarios for each timescale. The determination of changes in STP through a scenario-based approach offers a framework to rigorously investigate the effects of persistence at different timescales on lake cyanobacterial HABs.</p>



2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Suraksha M. Pednekar ◽  
S. G. Prabhu Matondkar ◽  
Vijaya Kerkar

Mandovi and Zuari estuarine complex is monsoon-influenced estuaries located along the central west coast of India. During the past few years, there has been an increase in nutrient loading specially during monsoonal runoff which is responsible for the growth of harmful algal flora. To understand occurrence and distribution of harmful algal blooms species, daily/alternate day samplings were carried out in Mandovi and Zuari estuaries during 2007-2008 and 2008-2009 periods, respectively, comprising of monsoon (June–November) and nonmonsoon (December–May). In Mandovi, total 54 HAB species with 49 in monsoon and 36 during nonmonsoon period were reported. In Zuari, total 46 HAB species with 38 in monsoon and 41 were reported during nonmonsoon period. Bray-Curtis cluster analysis based on log-transformed phytoplankton density detected seven well-defined groups revealing spatiotemporal variability. The density of the dominant harmful algal species was significantly positively correlated with nutrients, but negatively correlated with salinity. The results of the study indicate that monsoon plays an important role in occurrence and distribution of harmful algal species having direct correlation with salinity variations and nutrient loading.



2006 ◽  
Vol 72 (9) ◽  
pp. 5742-5749 ◽  
Author(s):  
Soohyoun Ahn ◽  
David M. Kulis ◽  
Deana L. Erdner ◽  
Donald M. Anderson ◽  
David R. Walt

ABSTRACT Harmful algal blooms (HABs) are a serious threat to coastal resources, causing a variety of impacts on public health, regional economies, and ecosystems. Plankton analysis is a valuable component of many HAB monitoring and research programs, but the diversity of plankton poses a problem in discriminating toxic from nontoxic species using conventional detection methods. Here we describe a sensitive and specific sandwich hybridization assay that combines fiber-optic microarrays with oligonucleotide probes to detect and enumerate the HAB species Alexandrium fundyense, Alexandrium ostenfeldii, and Pseudo-nitzschia australis. Microarrays were prepared by loading oligonucleotide probe-coupled microspheres (diameter, 3 μm) onto the distal ends of chemically etched imaging fiber bundles. Hybridization of target rRNA from HAB cells to immobilized probes on the microspheres was visualized using Cy3-labeled secondary probes in a sandwich-type assay format. We applied these microarrays to the detection and enumeration of HAB cells in both cultured and field samples. Our study demonstrated a detection limit of approximately 5 cells for all three target organisms within 45 min, without a separate amplification step, in both sample types. We also developed a multiplexed microarray to detect the three HAB species simultaneously, which successfully detected the target organisms, alone and in combination, without cross-reactivity. Our study suggests that fiber-optic microarrays can be used for rapid and sensitive detection and potential enumeration of HAB species in the environment.



Sign in / Sign up

Export Citation Format

Share Document