Hydrogen sulfide intrusion in seagrasses from Shark Bay, Western Australia

2012 ◽  
Vol 63 (11) ◽  
pp. 1027 ◽  
Author(s):  
Marion L. Cambridge ◽  
Matthew W. Fraser ◽  
Marianne Holmer ◽  
John Kuo ◽  
Gary A. Kendrick

Sulfides in sediments and hydrogen sulfide (H2S) intrusion in plant tissues were investigated for six species of seagrass in Shark Bay, Western Australia, at two sites with elevated salinities of 42 and 45 psu. H2S intrusion ranged from <20% to 100% in roots and rhizomes, indicating a high degree of sulfide intrusion in some cases, although this did not vary consistently between larger, long-lived species and smaller, less persistent species. There were significant differences in accumulation of total sulfur (TS) among species. Anatomy of rhizomes and roots showed species-specific differences in aerenchyma, the air channels that allow oxygen to diffuse down to the roots and sediments, and tissues with thickened cell walls that could present a barrier to diffusion of H2S, suggesting that morphology may influence sulfide intrusion and sulfur accumulation. Sulfide concentrations in seagrass sediments were far lower in Shark Bay than in Florida Bay, a subtropical embayment where sulfide toxicity has been implicated in seagrass dieback. Despite significant H2S intrusion into tissues of some Shark Bay seagrasses, there was no evidence of any deleterious effects in the current conditions.

Author(s):  
R.E. Crang ◽  
M. Mueller ◽  
K. Zierold

Obtaining frozen-hydrated sections of plant tissues for electron microscopy and microanalysis has been considered difficult, if not impossible, due primarily to the considerable depth of effective freezing in the tissues which would be required. The greatest depth of vitreous freezing is generally considered to be only 15-20 μm in animal specimens. Plant cells are often much larger in diameter and, if several cells are required to be intact, ice crystal damage can be expected to be so severe as to prevent successful cryoultramicrotomy. The very nature of cell walls, intercellular air spaces, irregular topography, and large vacuoles often make it impractical to use immersion, metal-mirror, or jet freezing techniques for botanical material.However, it has been proposed that high-pressure freezing (HPF) may offer an alternative to the more conventional freezing techniques, inasmuch as non-cryoprotected specimens may be frozen in a vitreous, or near-vitreous state, to a radial depth of at least 0.5 mm.


2019 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
T Ljubka ◽  
O Tsarenko ◽  
I Tymchenko

The investigation of macro- and micromorphological peculiarities of seeds of four species of genus Epipactis (Orchidaceae) of Ukrainian flora were carried out. The genus Epipactis is difficult in the in in taxonomic terms and for its representatives are characterized by polymorphism of morphological features of vegetative and generative organs of plants and ability of species to hybridize. The aim of the research was to perform a comparative morphological study of seeds of E. helleborine, E. albensis, E. palustris, E. purpurata and to determine carpological features that could more accurately identify species at the stage of fruiting. A high degree of variation in the shape of the seeds in different populations within the species and overlap of most quantitative carpological characteristics of studied species are noted. There were no significant differences in micromorphological features of the structure of the testa at species or population level. The reticulate surface of the testa is characteristic of all species, the cells of testa are mostly elongated, penta-hexagonal, individual cells almost isodiametric-pentagonal. From the micropillary to the chalasal end, a noticeable change in the shape and size of the seed coat cells is not observed. There are no intercellular spaces, the anticlinal walls of adjacent cells are intergrown and the boundaries between them become invisible. The outer periclinal walls have a single, mainly longitudinal thin ribbed thickenings. Anticlinal cell walls are thick, dense, smooth. The longitudinal Anticlinal walls are almost straight, transverse - straight or sometimes curved in some cells. Epicuticular deposits on the periclinal walls are absent. It is concluded that the use of macro and micromorphological characteristics of seeds of these species for clearer diagnosis at the stage of fruiting is low informative.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1537
Author(s):  
Aneta Saletnik ◽  
Bogdan Saletnik ◽  
Czesław Puchalski

Raman spectroscopy is one of the main analytical techniques used in optical metrology. It is a vibration, marker-free technique that provides insight into the structure and composition of tissues and cells at the molecular level. Raman spectroscopy is an outstanding material identification technique. It provides spatial information of vibrations from complex biological samples which renders it a very accurate tool for the analysis of highly complex plant tissues. Raman spectra can be used as a fingerprint tool for a very wide range of compounds. Raman spectroscopy enables all the polymers that build the cell walls of plants to be tracked simultaneously; it facilitates the analysis of both the molecular composition and the molecular structure of cell walls. Due to its high sensitivity to even minute structural changes, this method is used for comparative tests. The introduction of new and improved Raman techniques by scientists as well as the constant technological development of the apparatus has resulted in an increased importance of Raman spectroscopy in the discovery and defining of tissues and the processes taking place in them.


2016 ◽  
Vol 22 (2) ◽  
pp. 105-122 ◽  
Author(s):  
Patrick W. M. Corbett ◽  
Rayana Estrella ◽  
Andrea Morales Rodriguez ◽  
Ahmed Shoeir ◽  
Leonardo Borghi ◽  
...  

2017 ◽  
Vol 14 (6) ◽  
pp. 1721-1737 ◽  
Author(s):  
Liza M. Roger ◽  
Annette D. George ◽  
Jeremy Shaw ◽  
Robert D. Hart ◽  
Malcolm Roberts ◽  
...  

Abstract. The shells of two marine bivalve species (Fulvia tenuicostata and Soletellina biradiata) endemic to south Western Australia have been characterised using a combined crystallographic, spectroscopic and geochemical approach. Both species have been described previously as purely aragonitic; however, this study identified the presence of three phases, namely aragonite, calcite and Mg-calcite, using XRD analysis. Data obtained via confocal Raman spectroscopy, electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) show correlations between Mg ∕ S and Mg ∕ P in F. tenuicostata and between Sr ∕ S and S ∕ Ba in S. biradiata. The composition of the organic macromolecules that constitute the shell organic matrix (i.e. the soluble phosphorus-dominated and/or insoluble sulfur-dominated fraction) influences the incorporation of Mg, Sr and Ba into the crystal lattice. Ionic substitution, particularly Ca2+ by Mg2+ in calcite in F. tenuicostata, appears to have been promoted by the combination of both S- and P-dominated organic macromolecules. The elemental composition of these two marine bivalve shells is species specific and influenced by many factors, such as crystallographic structure, organic macromolecule composition and environmental setting. In order to reliably use bivalve shells as proxies for paleoenvironmental reconstructions, both the organic and inorganic crystalline material need to be characterised to account for all influencing factors and accurately describe the vital effect.


1956 ◽  
Vol 9 (4) ◽  
pp. 545 ◽  
Author(s):  
EG Bowen

It is reasonable to suppose that observations like that of cirrus cloud in the upper air and heavy falls of snow in relatively warm latitudes correspond to the presence of a large number of freezing nuclei in the atmosphere. A 300-year record of snow covering the ground at Tokyo and a 10-year record of cirrus cloud in Western Australia are examined and compared with one year's measurement of freezing nucleus concentration. The curves show a high degree of correlation, and all three tend to maximize on certain calendar dates.


2005 ◽  
Vol 52 (4) ◽  
pp. 797-802
Author(s):  
Lucyna Pawłowska-Cwiek ◽  
Ryszard Pado

This work was designed to find the cause of the delay in hydrogen sulfide dissimilation in Desulfotomaculum acetoxidans DSM 771, which is dependent on the sulfate uptake. This bacterium grown without addition of any aromatic compound was shown by spectrum analysis with the methylene method to contain hydroxy-benzoate derivatives. The presence of these compounds was confirmed by HPLC in fractions obtained from cell walls after 15 days of culture. The test with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt seemed to indicate the presence of peroxidase, which probably oxidized benzoate to its hydroxy derivatives. The test with 5-sulfo-salicylic acid proved the ability of the investigated strain to utilize arylsulfates and to reduce sulfate group to hydrogen sulfide. On the basis of the above data, we propose the following sequence of reactions: 1, benzoate secretion; 2, benzoate hydroxylation; 3, sulfonation of hydroxy-benzoate derivatives.


Sign in / Sign up

Export Citation Format

Share Document