The Orientation Dependence of Work?Hardening in Crystals of Face-centred Cubic Metals

1960 ◽  
Vol 13 (2) ◽  
pp. 316 ◽  
Author(s):  
LM Clarebrough ◽  
ME Hargreaves

It is shown that the principal features of the observed orientation dependence of work-hardening can be accounted for in terms of the likelihood of formation. Of Lomer-Cottrell sessile dislocations in two directions in tb" primary slip plane. This is deduced from the known variation of resolved shear stress with orientation, for the possible secondary slip systems, and metallographic observations of slip and deformation bands.

1967 ◽  
Vol 45 (2) ◽  
pp. 1091-1099 ◽  
Author(s):  
D. Hull ◽  
J. F. Byron ◽  
F. W. Noble

Recent observations relating to the critical resolved shear stress for slip in tantalum and tungsten are reported. The results of tensile and compressive deformation are discussed in terms of the operative slip systems and the possible asymmetry of {112} [Formula: see text] slip. It is concluded that the asymmetry hypothesis is unable to account satisfactorily for anomalies in the deformation behavior of these materials.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 445 ◽  
Author(s):  
Fernando Daniel León-Cázares ◽  
Catherine Mary Fiona Rae

Plastic deformation in metals is heavily influenced by the loading direction. Studies have explored its effects on multiple mechanisms by analysing individual dislocations, but there is currently no systematic way of rationalising the cooperative behaviour of the different slip systems for arbitrary stress tensors. The current study constitutes the foundation of a new orientation analysis framework for face-centred cubic crystals by introducing “stress orientation maps”, graphical tools to simultaneously analyse the effects of loading orientation on the stress state of the a 2 ⟨ 1 1 ¯ 0 ⟩ { 111 } and a 6 ⟨ 112 ⟩ { 111 } slip systems in a comprehensive, yet intuitive way. Relationships between the Schmid and Escaig stresses are described from geometrical constraints of the slip systems in the crystal structure, linking the dislocation behaviour on a slip plane with the stress tensor via a one parameter description. The case of uniaxial loading along different orientations within the fundamental sector of the unit cell is explored to describe the physical basis, properties and capabilities of this framework. The stress normal to the slip plane is then considered in the analysis via an extension of the Mohr’s circles. The orientation dependence of two twin nucleation mechanisms from the literature are examined as examples of how the stress orientation maps can be used.


Author(s):  
J. R. Fekete ◽  
R. Gibala

The deformation behavior of metallic materials is modified by the presence of grain boundaries. When polycrystalline materials are deformed, additional stresses over and above those externally imposed on the material are induced. These stresses result from the constraint of the grain boundaries on the deformation of incompatible grains. This incompatibility can be elastic or plastic in nature. One of the mechanisms by which these stresses can be relieved is the activation of secondary slip systems. Secondary slip systems have been shown to relieve elastic and plastic compatibility stresses. The deformation of tungsten bicrystals is interesting, due to the elastic isotropy of the material, which implies that the entire compatibility stress field will exist due to plastic incompatibility. The work described here shows TEM observations of the activation of secondary slip in tungsten bicrystals with a [110] twist boundary oriented with the plane normal parallel to the stress axis.


1998 ◽  
Vol 552 ◽  
Author(s):  
Q. Feng ◽  
S. H.

ABSTRACTThe temperature as well as orientation dependence in anomalous hardening occurs in single crystal Ti-56AI between 673K and 1073K under single slip of ordinary dislocations. The ordinary dislocations (1/2<110]) are gliding not only on (111) plane but also on (110) plane in the temperature range where the anomalous hardening occurs in single crystal Ti-56A1. The TEM study shows that the (110) cross-slip of ordinary dislocations is a double cross-slip in nature in which first, the dislocations cross-slip from the primary (111) slip plane to (110) plane followed by cross-slipping again onto another primary slip plane. This double cross-slip leaves a pair of edge segments 'superjogs' in (110) planes. It appears that these superjogs are immobile in the forward direction and act as pinning points. Furthermore, these pinning points would act as a Frank-Read source for the double cross-slipped dislocations, which generate dislocation loops as well as dislocation dipoles. The pinning structure, multiplane dislocation loops, and dipoles of double cross-slip origin all contribute to anomalous hardening at high temperatures in this material.


2018 ◽  
Vol 784 ◽  
pp. 44-48 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Aleš Materna

Deformation mechanisms and mechanical properties of Fe3(wt.%)Si single crystal in two different orientations were investigated by spherical indentation. For correct interpretation of measured data and better understanding of the deformation mechanisms under the contact area, finite element simulations were carried out and resolved shear stress in available slip systems was computed. Pop-in behavior, differences in hardness, indentation modulus and shapes of residual imprints were observed and associated with different activation of slip.


2012 ◽  
Vol 717-720 ◽  
pp. 327-330 ◽  
Author(s):  
Huan Huan Wang ◽  
Sha Yan Byrapa ◽  
F. Wu ◽  
Balaji Raghothamachar ◽  
Michael Dudley ◽  
...  

In this paper, we report on the synchrotron white beam topographic (SWBXT) observation of “hopping” Frank-Read sources in 4H-SiC. A detailed mechanism for this process is presented which involves threading edge dislocations experiencing a double deflection process involving overgrowth by a macrostep (MP) followed by impingement of that macrostep against a step moving in the opposite direction. These processes enable the single-ended Frank-Read sources created by the pinning of the deflected basal plane dislocation segments at the less mobile threading edge dislocation segments to “hop” from one slip plane to other parallel slip planes. We also report on the nucleation of 1/3< >{ } prismatic dislocation half-loops at the hollow cores of micropipes and their glide under thermal shear stress.


Author(s):  
Shadab Siddiqui ◽  
Nagaraj K. Arakere ◽  
Fereshteh Ebrahimi

A comprehensive numerical investigation of plasticity (slip) evolution near notches was conducted at 28°C and 927°C, for two crystallographic orientations of double-notched single crystal nickel base superalloys (SCNBS) specimens. The two specimens have a common loading orientation of &lt;001&gt; and have notches parallel to the &lt;010&gt; (specimen I) and &lt;110&gt; (specimen II) orientation, respectively. A three dimensional anisotropic linear elastic finite element model was employed to calculate the stress field near the notch of these samples. Resolved shear stress values were obtained near the notch for the primary octahedral slip systems ({111} &lt;110&gt;) and cube slip systems ({100} &lt;110&gt;). The effect of temperature was incorporated in the model as changes in the elastic modulus values and the critical resolved shear stress (CRSS). The results suggest that the number of dominant slip systems (slip systems with the highest resolved shear stress) and the size and the shape of the plastic zones around the notch are both functions of the orientation as well as the test temperature. A comparison between the absolute values of resolved shear stresses near the notch at 28°C and 927°C on the {111} slip planes revealed that the plastic zone size and the number of activated dominant slip systems are not significantly affected by the temperature dependency of the elastic properties of the SCNBS, but rather by the change in critical resolved shear stress of this material with temperature. The load required to initiate slip was found to be lower in specimen II than in specimen I at both temperatures. Furthermore, at 927°C the maximum resolved shear stress (RSS) on the notch surface was found to be greater on the {100} slip planes as compared with the {111} slip planes in both specimens. The results from this study will be helpful in understanding the slip evolution in SCNBS at high temperatures.


1989 ◽  
Vol 20 (11) ◽  
pp. 2471-2482 ◽  
Author(s):  
M. Zandrahimi ◽  
S. Platias ◽  
D. Frice ◽  
D. Barrett ◽  
P. S. Bate ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document