scholarly journals Numerical Modelling of Climate

1980 ◽  
Vol 33 (5) ◽  
pp. 897
Author(s):  
BG Hunt

Numerous ways of modelling climate exist, ranging from a single, simple mathematical equation up to complex global atmospheric--oceanic coupled models which explicitly forecast the basic weather elements such as temperature, pressure, wind velocity etc. These models, known as general circulation models, currently provide the most comprehensive and credible representations of climatic systems. The structure of these models is briefly outlined, and results from a number of models are presented to illustrate their versatility. A number of other simpler modelling approaches to climate are discussed to emphasize the opportunities which this problem presents for creative and rewarding research.

2019 ◽  
Vol 19 (17) ◽  
pp. 11383-11399
Author(s):  
Jonathan K. P. Shonk ◽  
Teferi D. Demissie ◽  
Thomas Toniazzo

Abstract. Modern coupled general circulation models produce systematic biases in the tropical Atlantic that hamper the reliability of long-range predictions. This study focuses on a common springtime westerly wind bias in the equatorial Atlantic in seasonal hindcasts from two coupled models – ECMWF System 4 and EC-Earth v2.3 – and in hindcasts also based on System 4, but with prescribed sea-surface temperatures. The development of the equatorial westerly bias in early April is marked by a rapid transition from a wintertime easterly, cold tongue bias to a springtime westerly bias regime that displays a marked double intertropical convergence zone (ITCZ). The transition is a seasonal feature of the model climatology (independent of initialisation date) and is associated with a seasonal increase in rainfall where a second branch of the ITCZ is produced south of the Equator. Excess off-equatorial convergence redirects the trade winds away from the Equator. Based on arguments of temporal coincidence, the results of our analysis contrast with those from previous work, and alleged causes hereto identified as the likely cause of the equatorial westerly bias in other models must be discarded. Quite in general, we find no evidence of remote influences on the development of the springtime equatorial bias in the Atlantic in the IFS-based models. Limited evidence however is presented that supports the hypothesis of an incorrect representation of the meridional equatorward flow in the marine boundary layer of the southern Atlantic as a contributing factor. Erroneous dynamical constraints on the flow upstream of the Equator may generate convergence and associated rainfall south of the Equator. This directs attention to the representation of the properties of the subtropical boundary layer as a potential source for the double ITCZ bias.


2014 ◽  
Vol 27 (14) ◽  
pp. 5285-5310 ◽  
Author(s):  
Karl Stein ◽  
Axel Timmermann ◽  
Niklas Schneider ◽  
Fei-Fei Jin ◽  
Malte F. Stuecker

Abstract One of the key characteristics of El Niño–Southern Oscillation (ENSO) is its synchronization to the annual cycle, which manifests in the tendency of ENSO events to peak during boreal winter. Current theory offers two possible mechanisms to account the for ENSO synchronization: frequency locking of ENSO to periodic forcing by the annual cycle, or the effect of the seasonally varying background state of the equatorial Pacific on ENSO’s coupled stability. Using a parametric recharge oscillator (PRO) model of ENSO, the authors test which of these scenarios provides a better explanation of the observed ENSO synchronization. Analytical solutions of the PRO model show that the annual modulation of the growth rate parameter results directly in ENSO’s seasonal variance, amplitude modulation, and 2:1 phase synchronization to the annual cycle. The solutions are shown to be applicable to the long-term behavior of the damped model excited by stochastic noise, which produces synchronization characteristics that agree with the observations and can account for the variety of ENSO synchronization behavior in state-of-the-art coupled general circulation models. The model also predicts spectral peaks at “combination tones” between ENSO and the annual cycle that exist in the observations and many coupled models. In contrast, the nonlinear frequency entrainment scenario predicts the existence of a spectral peak at the biennial frequency corresponding to the observed 2:1 phase synchronization. Such a peak does not exist in the observed ENSO spectrum. Hence, it can be concluded that the seasonal modulation of the coupled stability is responsible for the synchronization of ENSO events to the annual cycle.


2011 ◽  
Vol 24 (22) ◽  
pp. 5935-5950 ◽  
Author(s):  
Elinor R. Martin ◽  
Courtney Schumacher

Abstract A census of 19 coupled and 12 uncoupled model runs from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) shows that all models have the ability to simulate the location and height of the Caribbean low-level jet (CLLJ); however, the observed semiannual cycle of the CLLJ magnitude was a challenge for the models to reproduce. In particular, model means failed to capture the strong July CLLJ peak as a result of the lack of westward and southward expansion of the North Atlantic subtropical high (NASH) between May and July. The NASH was also found to be too strong, particularly during the first 6 months of the year in the coupled model runs, which led to increased meridional sea level pressure gradients across the southern Caribbean and, hence, an overly strong CLLJ. The ability of the models to simulate the correlation between the CLLJ and regional precipitation varied based on season and region. During summer months, the negative correlation between the CLLJ and Caribbean precipitation anomalies was reproduced in the majority of models, with uncoupled models outperforming coupled models. The positive correlation between the CLLJ and the central U.S. precipitation during February was more challenging for the models, with the uncoupled models failing to reproduce a significant relationship. This may be a result of overactive convective parameterizations raining out too much moisture in the Caribbean meaning less is available for transport northward, or due to incorrect moisture fluxes over the Gulf of Mexico. The representation of the CLLJ in general circulation models has important consequences for accurate predictions and projections of future climate in the Caribbean and surrounding regions.


2009 ◽  
Vol 16 (4) ◽  
pp. 453-473 ◽  
Author(s):  
J. Boucharel ◽  
B. Dewitte ◽  
B. Garel ◽  
Y. du Penhoat

Abstract. El Niño Southern Oscillation (ENSO) is the dominant mode of climate variability in the Pacific, having socio-economic impacts on surrounding regions. ENSO exhibits significant modulation on decadal to inter-decadal time scales which is related to changes in its characteristics (onset, amplitude, frequency, propagation, and predictability). Some of these characteristics tend to be overlooked in ENSO studies, such as its asymmetry (the number and amplitude of warm and cold events are not equal) and the deviation of its statistics from those of the Gaussian distribution. These properties could be related to the ability of the current generation of coupled models to predict ENSO and its modulation. Here, ENSO's non-Gaussian nature and asymmetry are diagnosed from in situ data and a variety of models (from intermediate complexity models to full-physics coupled general circulation models (CGCMs)) using robust statistical tools initially designed for financial mathematics studies. In particular α-stable laws are used as theoretical background material to measure (and quantify) the non-Gaussian character of ENSO time series and to estimate the skill of ``naïve'' statistical models in producing deviation from Gaussian laws and asymmetry. The former are based on non-stationary processes dominated by abrupt changes in mean state and empirical variance. It is shown that the α-stable character of ENSO may result from the presence of climate shifts in the time series. Also, cool (warm) periods are associated with ENSO statistics having a stronger (weaker) tendency towards Gaussianity and lower (greater) asymmetry. This supports the hypothesis of ENSO being rectified by changes in mean state through nonlinear processes. The relationship between changes in mean state and nonlinearity (skewness) is further investigated both in the Zebiak and Cane (1987)'s model and the models of the Intergovernmental Panel for Climate Change (IPCC). Whereas there is a clear relationship in all models between ENSO asymmetry (as measured by skewness or nonlinear advection) and changes in mean state, they exhibit a variety of behaviour with regard to α-stability. This suggests that the dynamics associated with climate shifts and the occurrence of extreme events involve higher-order statistical moments that cannot be accounted for solely by nonlinear advection.


2004 ◽  
Vol 17 (24) ◽  
pp. 4623-4629 ◽  
Author(s):  
E. Guilyardi ◽  
S. Gualdi ◽  
J. Slingo ◽  
A. Navarra ◽  
P. Delecluse ◽  
...  

Abstract A systematic modular approach to investigate the respective roles of the ocean and atmosphere in setting El Niño characteristics in coupled general circulation models is presented. Several state-of-the-art coupled models sharing either the same atmosphere or the same ocean are compared. Major results include 1) the dominant role of the atmosphere model in setting El Niño characteristics (periodicity and base amplitude) and errors (regularity) and 2) the considerable improvement of simulated El Niño power spectra—toward lower frequency—when the atmosphere resolution is significantly increased. Likely reasons for such behavior are briefly discussed. It is argued that this new modular strategy represents a generic approach to identifying the source of both coupled mechanisms and model error and will provide a methodology for guiding model improvement.


2019 ◽  
Author(s):  
Jonathan K. P. Shonk ◽  
Teferi D. Demissie ◽  
Thomas Toniazzo

Abstract. Modern coupled general circulation models produce systematic biases in the tropical Atlantic that hamper the reliability of long-range predictions. This study focuses on a common springtime westerly wind bias in the equatorial Atlantic in seasonal hindcasts from two coupled models – ECMWF System 4 and EC-Earth v2.3 – and in hindcasts also based on System 4, but with prescribed sea-surface temperatures. The coupled models share common atmosphere and ocean components, although at different versions. We examine the sequence in which different biases appear during the development of the westerly bias in early April, which is marked by a rapid transition from a wintertime bias pattern with an equatorial cold tongue and an easterly wind bias to a springtime westerly bias regime displaying a marked double ITCZ. The transition is a seasonal feature of the model climatology (independent of start date), and is associated with the seasonal increase in rainfall around the start of April and the consequent enhancement of the southern branch of a double ITCZ, which generates excess off-equatorial convergence and redirects the trade winds away from the equator. There is no evidence of remote influences on the biases at the time of the transition. By contrast, there appears to be an association with a persistent dry bias north of the equator. Based on our analysis, a possible contribution to the springtime development of the double ITCZ and the westerly equatorial wind bias is a failure to correctly represent the meridional cross-equatorial flow, which can instigate a meridional rainfall bias pattern across the equator.


2007 ◽  
Vol 20 (6) ◽  
pp. 1093-1107 ◽  
Author(s):  
Muyin Wang ◽  
James E. Overland ◽  
Vladimir Kattsov ◽  
John E. Walsh ◽  
Xiangdong Zhang ◽  
...  

Abstract There were two major multiyear, Arctic-wide (60°–90°N) warm anomalies (>0.7°C) in land surface air temperature (LSAT) during the twentieth century, between 1920 and 1950 and again at the end of the century after 1979. Reproducing this decadal and longer variability in coupled general circulation models (GCMs) is a critical test for understanding processes in the Arctic climate system and increasing the confidence in the Intergovernmental Panel on Climate Change (IPCC) model projections. This study evaluated 63 realizations generated by 20 coupled GCMs made available for the IPCC Fourth Assessment for their twentieth-century climate in coupled models (20C3M) and corresponding control runs (PIcntrl). Warm anomalies in the Arctic during the last two decades are reproduced by all ensemble members, with considerable variability in amplitude among models. In contrast, only eight models generated warm anomaly amplitude of at least two-thirds of the observed midcentury warm event in at least one realization, but not its timing. The durations of the midcentury warm events in all the models are decadal, while that of the observed was interdecadal. The variance of the control runs in nine models was comparable with the variance in the observations. The random timing of midcentury warm anomalies in 20C3M simulations and the similar variance of the control runs in about half of the models suggest that the observed midcentury warm period is consistent with intrinsic climate variability. Five models were considered to compare somewhat favorably to Arctic observations in both matching the variance of the observed temperature record in their control runs and representing the decadal mean temperature anomaly amplitude in their 20C3M simulations. Seven additional models could be given further consideration. Results support selecting a subset of GCMs when making predictions for future climate by using performance criteria based on comparison with retrospective data.


2016 ◽  
Vol 97 (12) ◽  
pp. 2305-2328 ◽  
Author(s):  
Paquita Zuidema ◽  
Ping Chang ◽  
Brian Medeiros ◽  
Ben P. Kirtman ◽  
Roberto Mechoso ◽  
...  

Abstract Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.


2007 ◽  
Vol 20 (20) ◽  
pp. 5134-5148 ◽  
Author(s):  
Bradfield Lyon ◽  
Simon J. Mason

Abstract Following the onset of the strong El Niño of 1997–98 historical rainfall teleconnection patterns and dynamical model predictions both suggested an enhanced likelihood of drought for southern Africa, but widespread dry conditions failed to materialize. Results from a diagnostic study of NCEP–NCAR reanalysis data are reported here demonstrating how the large- and regional-scale atmospheric circulations during the 1997–98 El Niño differed from previous events. Emphasis is placed on the January–March 1998 season and comparisons with the strong 1982–83 El Niño, although composites of eight events occurring between 1950 and 2000 are also considered. In a companion paper, simulation runs from three atmospheric general circulation models (AGCMs), and forecasts from three fully coupled models are employed to investigate the extent to which the anomalous atmospheric circulation patterns during the 1997–98 El Niño may have been anticipated. Observational results indicate that the 1997–98 El Niño displayed significant differences from both the 1982–83 episode and the composite event. An unusually strong Angola low, exceptionally high sea surface temperatures (SSTs) in the western Indian and eastern tropical South Atlantic Oceans, and an enhanced northerly moisture flux from the continental interior and the western tropical Indian Ocean all appear to have contributed to more seasonal rainfall in 1997–98 over much of the southern Africa subcontinent than in past El Niño events.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Norihiko Sugimoto ◽  
Yukiko Fujisawa ◽  
Mimo Shirasaka ◽  
Asako Hosono ◽  
Mirai Abe ◽  
...  

Planetary-scale 4-day Kelvin-type waves at the cloud top of the Venus atmosphere have been reported from the 1980s, and their significance for atmospheric dynamics has been pointed out. However, these waves have not been reproduced in Venus atmospheric general circulation models (VGCMs). Recently, horizontal winds associated with the planetary-scale waves at the cloud top have been obtained from cloud images taken by cameras onboard Venus orbiters, which could enable us to clarify the structure and roles of Kelvin-type waves. In order to examine this possibility, our team carried out an idealized observing system simulation experiment (OSSE) with a data assimilation system which we developed. The wind velocity data provided by a CCSR/NIES (Center for Climate System Research/National Institute for Environmental Studies) VGCM where equatorial Kelvin-type waves were assumed below the cloud bottom was used as idealized observations. Results show that 4-day planetary-scale Kelvin-type waves are successfully reproduced if the wind velocity between 15° S and 15° N latitudes is assimilated every 6 h at 70 km altitude. It is strongly suggested that the Kelvin-type waves could be reproduced and investigated by the data assimilation with the horizontal wind data derived from Akatsuki ultraviolet images. The present results also contribute to planning future missions for understanding planetary atmospheres.


Sign in / Sign up

Export Citation Format

Share Document