scholarly journals Auger Photoelectron Coincidence Spectroscopy

1990 ◽  
Vol 43 (5) ◽  
pp. 443 ◽  
Author(s):  
SM Thurgate

Auger photoelectron coincidence spectroscopy (APECS) involves measuring an Auger line in coincidence with the corresponding photoelectron line of an X ray excited spectrum. Such spectra are free of many of the complicating features of conventional data and display the correlations that exist between the lines. APECS has been used to study a number of fundamental aspects of Auger spectroscopy, such as the removal of complicating effects due to Coster-Kronig transitions in the LZ.3 VV spectra of Cu. We have been able to show similar behaviour in the Auger spectra of Co. In principle, APECS can also be used to make measurements of surface core level shifts, to examine the process of electron scattering in solids, and it holds some promise as a technique for the routine examination of materials. The coincidence technique discriminates against secondary electrons in the background, the Auger and photoelectron peaks appear on a flatter background, and this helps to make the interpretation of Auger data collected in coincidence more straightforward. A number of successful APECS experiments have been constructed, using either X ray tubes or synchrotrons as sources. When an X ray tube is used as a source, the principal problem has been with the length of time needed to acquire a sufficient number of counts. We have recently completed construction of a novel spectrometer that goes someway towards overcoming this problem, however the challenge still remains to produce an instrument that will permit routine measurement of these features.

Author(s):  
T. J. Beveridge

The Bacillus subtilis cell wall provides a protective sacculus about the vital constituents of the bacterium and consists of a collection of anionic hetero- and homopolymers which are mainly polysaccharidic. We recently demonstrated that unfixed walls were able to trap and retain substantial amounts of metal when suspended in aqueous metal salt solutions. These walls were briefly mixed with low concentration metal solutions (5mM for 10 min at 22°C), were well washed with deionized distilled water, and the quantity of metal uptake (atomic absorption and X-ray fluorescence), the type of staining response (electron scattering profile of thin-sections), and the crystallinity of the deposition product (X-ray diffraction of embedded specimens) determined.Since most biological material possesses little electron scattering ability electron microscopists have been forced to depend on heavy metal impregnation of the specimen before obtaining thin-section data. Our experience with these walls suggested that they may provide a suitable model system with which to study the sites of reaction for this metal deposition.


Author(s):  
Patrick Echlin

A number of papers have appeared recently which purport to have carried out x-ray microanalysis on fully frozen hydrated samples. It is important to establish reliable criteria to be certain that a sample is in a fully hydrated state. The morphological appearance of the sample is an obvious parameter because fully hydrated samples lack the detailed structure seen in their freeze dried counterparts. The electron scattering by ice within a frozen-hydrated section and from the surface of a frozen-hydrated fracture face obscures cellular detail. (Fig. 1G and 1H.) However, the morphological appearance alone can be quite deceptive for as Figures 1E and 1F show, parts of frozen-dried samples may also have the poor morphology normally associated with fully hydrated samples. It is only when one examines the x-ray spectra that an assurance can be given that the sample is fully hydrated.


Author(s):  
A. J. Bleeker ◽  
P. Kruit

Combining of the high spatial resolution of a Scanning Transmission Electron Microscope and the wealth of information from the secondary electrons and Auger spectra opens up new possibilities for materials research. In a prototype instrument at the Delft University of Technology we have shown that it is possible from the optical point of view to combine STEM and Auger spectroscopy [1]. With an Electron Energy Loss Spectrometer attached to the microscope it also became possible to perform coincidence measurements between the secondary electron signal and the EELS signal. We measured Auger spectra of carbon aluminium and Argon gas showing energy resolutions better than 1eV [2]. The coincidence measurements on carbon with a time resolution of 5 ns yielded basic insight in secondary electron emission processes [3]. However, for serious Auger spectroscopy, the specimen needs to be in Ultra High Vacuum. ( 10−10 Torr ). At this moment a new setup is in its last phase of construction.


Author(s):  
R.D. Leapman

Extended X-ray Absorption Fine Structure (EXAFS) analysis makes use of synchrotron radiaion to measure modulations in the absorption coefficient above core edges and hence to obtain information about local atomic environments. EXAFS arises when ejected core electrons are backscattered by surrounding atoms and interfere with the outgoing waves. Recently, interest has also been shown in using inelastic electron scattering1-4. Some advantages of Extended X-ray-edge Energy Loss Fine Structure (EXELFS) are: a) small probes formed by the analytical electron microscope give spectra from μm to nm sized areas, compared with mm diameter areas for the X-ray technique, b) EXELFS can be combined with other techniques such as electron diffraction or high resolution imaging, and c) EXELFS is sensitive to low Z elements with K edges from ˜200 eV to ˜ 3000 eV (B to Cl).


1987 ◽  
Vol 2 (6) ◽  
pp. 768-774 ◽  
Author(s):  
Z. Iqbal ◽  
E. Leone ◽  
R. Chin ◽  
A. J. Signorelli ◽  
A. Bose ◽  
...  

The x-ray photoemission spectroscopie (XPS) data from different pelletized samples of the 90 K superconductor Ba2YCu3O7−δ (where δ∼0.2) have been obtained. The valence band spectrum (recorded at 300 and 170 K), which is composed of contributions from both the Cu 3d and O 2p levels, is compared with the full potential linearized augmented plane wave (FLAPW) calculated electronic density-of-states (DOS) reported by Massidda et al. and Mattheiss and Hamann. The experimental data indicate a relatively low DOS at the Fermi level. Detailed measurements of the core level Cu 2p, O 1s, Ba 3d, 4d, and Y 3d spectra of the superconducting and related standard materials, are presented. Data for the superconducting material were recorded in the freshly prepared form as well as after scraping in situ. The Cu 2p core level, satellite, and Auger spectra for the various samples were carefully examined in order to assess the possibility of the presence of Cu3+ ions in Ba2YCu3O7-δ. It is observed that surface reaction in air to form carbonates and hydroxides occurs readily in the superconducting material.


1997 ◽  
Vol 50 (4) ◽  
pp. 745 ◽  
Author(s):  
S. M. Thurgate

Abstract In 1925 Pierre Auger reported on his observations of low energy electrons associated with core-ionised atoms in cloud chamber experiments. He was able to correctly identify the mechanism for their production, and such electrons are now known as Auger electrons. Typically Auger electrons have energies in the range 10 eV to 2 keV. The short distance that such low energy electrons travel in solids ensures that Auger electrons come from the surface layers. The data generated by the AES technique are complex. There are at least three electrons involved in the process, and there are many possible configurations for the atom. These possibilities led to spectra that are not readily interpreted in detail. Theory lags behind experiment in this area. In principle, it should be possible to find information about the chemical environment of atoms from Auger spectra. While there are clear changes in spectral lineshapes, there is no simple way to go from the spectra to an understanding of the chemical bonding of the atom. There are a number of experiments currently underway which aim to improve our understanding of the Auger process. Synchrotron experiments with tunable energy x-rays are providing new insight. Experiments that use positrons to excite Auger emission have also produced further recent understanding. Coincidence experiments between photoelectrons and Auger electrons have also made recent advances. Auger photoelectron coincidence spectroscopy reduces the complexity of Auger spectra by only counting those electrons that occur as a consequence of selected ionisations. The effect is to reduce the complexity of the spectra, and to isolate processes that are often clouded by the simultaneous occurrence of other effects.


2019 ◽  
Vol 627 ◽  
pp. A39 ◽  
Author(s):  
Tuomo Salmi ◽  
Valery F. Suleimanov ◽  
Juri Poutanen

The aim of this work is to study the possible effects and biases on the radius constraints for rotation-powered millisecond pulsars when using Thomson approximation to describe electron scattering in the atmosphere models, instead of using exact formulation for Compton scattering. We compare the differences between the two models in the energy spectrum and angular distribution of the emitted radiation. We also analyse a self-generated, synthetic, phase-resolved energy spectrum, based on Compton atmosphere and the most X-ray luminous, rotation-powered millisecond pulsars observed by the Neutron star Interior Composition ExploreR (NICER). We derive constraints for the neutron star parameters using both the Compton and Thomson models. The results show that the method works by reproducing the correct parameters with the Compton model. However, biases are found in both the size and the temperature of the emitting hotspot, when using the Thomson model. The constraints on the radius are still not significantly changed, and therefore the Thomson model seems to be adequate if we are interested only in the radius measurements using NICER.


Sign in / Sign up

Export Citation Format

Share Document