Ethylene production and post-pollination development in Dendrobium flowers treated with foreign pollen

2001 ◽  
Vol 28 (5) ◽  
pp. 409 ◽  
Author(s):  
Saichol Ketsa ◽  
Kanokporn Bunya-atichart ◽  
Wouter G. van Doorn

Dendrobium ‘Pompadour’ flowers fade early following pollination. This is associated with increased ethylene production and early epinasty. These effects are also produced by application of 1-aminocyclopropane-1-carboxylic acid (ACC) on the stigma. Pollen (one anther each) from Ruellia tuberosa L. (Acanthaceae) and Caesalpinia pulcherrima (L.) Sw. (Fabaceae) also increased ethylene production and caused early epinasty and fading. Pollen of Hibiscus schizopetalus (Mast.) Hook.f. (Malvaceae), in contrast, had no effect. R. tuberosa pollen increased ACC concentration and ACC synthase activity of the orchid flowers. Aminooxyacetic acid (AOA) pretreatment prior to R. tuberosa pollination prevented early fading, epinasty and the increase in ethylene production. It also prevented the increase in ACC concentration, and ACC synthase activity. Ovary growth was stimulated by Dendrobium ‘Pompadour’ pollinia, not by any of the incompatible pollen. Applied ACC did not promote ovary growth. It is concluded that incompatible pollen can hasten senescence and epinasty by increasing ACC synthase activity and ethylene production. Ovary growth, in contrast, is apparently not primarily regulated by ethylene.

2021 ◽  
Author(s):  
Mitsutoshi Okamoto ◽  
Tomoko Niki ◽  
Mirai Azuma ◽  
Kenichi Shibuya ◽  
Kazuo Ichimura

Abstract Delphinium flowers are highly sensitive to ethylene and its sepals abscise during senescence, which is associated with increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) activities and ethylene production in gynoecium and receptacle. Three ACS genes (DgACS1, DgACS2, and DgACS3) and three ACO genes (DgACO1, DgACO2, and DgACO3) were cloned from Delphinium grandiflorum cv. Super Grand Blue. To investigate the contribution of these genes to ethylene production, their expression was analyzed in these genes in the gynoecium and receptacle during natural senescence and following ethylene exposure and pollination. Ethylene production in the gynoecium and receptacle increased during natural flower senescence. The transcript levels of the ACS and ACO genes in these organs, excluding DgACS2 in the receptacle, increased during senescence. Exposure to ethylene accelerated sepal abscission and more strongly increased ethylene production in the receptacle than in the gynoecium. DgACS1 transcript levels in the gynoecium and DgACS2 and DgACO3 transcript levels in the receptacle were increased by ethylene exposure. Pollination accelerated sepal abscission and increased ethylene production in the gynoecium and receptacle. Pollination slightly affected ACS and ACO transcript levels in the gynoecium, whereas DgACO3 transcript level in the receptacle were markedly increased. These results reveal that ACS and ACO gene expression is differently regulated in the gynoecium and receptacle, and some of these genes are more strongly upregulated by ethylene exposure and pollination in the receptacle than in the gynoecium, suggesting the significance of the receptacle to sepal abscission.


1996 ◽  
Vol 23 (4) ◽  
pp. 479 ◽  
Author(s):  
M Gallardo ◽  
I Sanchez-Calle ◽  
PMD Rueda ◽  
AJ Matilla

Germination of chickpea (Cicer arietinum L.) was inhibited by supraoptimal temperatures of 30 or 35�C, but the inhibition was alleviated by a relatively low concentration (1 mM) of putrescine (Put). This allevation may be due to (a) stimulation of the 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase activities; (b) increased levels of ACC and decreased levels of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC); or (c) strongly increased ethylene production. Put at 10 mM did not alleviate thermoinhibition, although, as with Put at 1 mM, it did inhibit adenosyl-methionine (AdoMet) decarboxylase. Alleviation conditions resulted in: (a) an induced accumulation of free Put (S) and Put conjugated to substances of low (HS) and high (HP) molecular weight; (b) a decrease in spermidine (Spd) and spermine (Spm) (S and HP); and (c) no alteration in the levels of Spd and Spm (HS) with respect to the absence of Put (1 mM) at 30�C. In the presence of Put (10 mM), increased accumulation of Put (S, HS and HP) was detected, but with a sharp decrease of Spd and Spm (S and HS).


1992 ◽  
Vol 117 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Shiow Y. Wang ◽  
Miklos Faust

Ethylene biosynthesis and polyamine content were determined in normal and watercore-affected apple (Malus domestics Borkh. cv. Delicious). Fruit with watercore produced more ethylene and contained higher amounts of putrescine (PUT), spermidine (SPD), 1-aminocyclopropane-1-carboxylic acid (ACC), and 1-(malonylamino) cyclo-propane-1-carboxylic acid (MACC). The activities of ACC synthase and ethylene-forming enzyme (EFE) in watercore-affected fruit were also higher than in normal fruit. The EFE activity in severely affected flesh was inhibited, resulting in ACC accumulation and low ethylene production. S-adenosylmethionine (AdoMet) was maintained at a steady-state level even when C2 H4 and polyamides were actively synthesized in normal and affected fruit.


1999 ◽  
Vol 124 (6) ◽  
pp. 598-604 ◽  
Author(s):  
Michelle L. Jones ◽  
William R. Woodson

Following a compatible pollination in carnation (Dianthus caryophyllus L. `White Sim'), a signal that coordinates postpollination events is translocated from the style to the ovary and petals. In this paper the roles of ethylene and its direct precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in this signaling were investigated. Following pollination, ethylene and ACC increased sequentially in styles, ovaries, and petals. Ethylene and ACC were highest initially in the stigmatic region of the style but by 24 hours after pollination were highest in the base. Activity of ACC synthase correlated well with ethylene production in styles and petals. In ovaries, ACC synthase activity decreased after pollination despite elevated ethylene production. Lack of ACC synthase activity in pollinated ovaries, coupled with high ACC content, suggests that ACC is translocated within the gynoecium. Further, detection of propylene from petals following application to the ovary provided evidence for movement of ethylene within the flower. Experiments that removed styles and petals at various times after pollination suggest there is a transmissible pollination signal in carnations that has reached the ovary by 12 hours and the petals by 14 to 16 hours.


2021 ◽  
Author(s):  
Yinglin Ji ◽  
Yi Qu ◽  
Zhongyu Jiang ◽  
Jijun Yan ◽  
Jinfang Chu ◽  
...  

Abstract The plant hormone ethylene is important for the ripening of climacteric fruit, such as pear (Pyrus ussuriensis), and the brassinosteroid (BR) class of phytohormones affects ethylene biosynthesis during ripening via an unknown molecular mechanism. Here, we observed that exogenous BR treatment suppressed ethylene production and delayed fruit ripening, whereas treatment with a BR biosynthesis inhibitor promoted ethylene production and accelerated fruit ripening in pear, suggesting BR is a ripening suppressor. The expression of the transcription factor BRASSINAZOLE-RESISTANT 1PuBZR1 was enhanced by BR treatment during pear fruit ripening. PuBZR1 interacted with PuACO1, which converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene, and suppressed its activity. BR-activated PuBZR1 bound to the promoters of PuACO1 and of PuACS1a, which encodes ACC synthase, and directly suppressed their transcription. Moreover, PuBZR1 suppressed the expression of transcription factor PuERF2 by binding its promoter, and PuERF2 bound to the promoters of PuACO1 and PuACS1a. We concluded that PuBZR1 indirectly suppresses the transcription of PuACO1 and PuACS1a through its regulation of PuERF2. Ethylene production and expression profiles of corresponding apple (Malus domestica) homologs showed similar changes following epibrassinolide treatment. Together, these results suggest that BR-activated BZR1 suppresses ACO1 activity and the expression of ACO1 and ACS1, thereby reducing ethylene production and suppressing fruit ripening. This likely represents a conserved mechanism by which BR suppresses ethylene biosynthesis during climacteric fruit ripening.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sandhya Rani Kuanar ◽  
Kutubuddin Ali Molla ◽  
Krishnendu Chattopadhyay ◽  
Ramani Kumar Sarkar ◽  
Pravat Kumar Mohapatra

AbstractIn the recent time, Submergence1 (Sub1)QTL, responsible for imparting tolerance to flash flooding, has been introduced in many rice cultivars, but resilience of the QTL to stagnant flooding (SF) is not known. The response of Sub1-introgression has been tested on physiology, molecular biology and yield of two popular rice cultivars (Swarna and Savitri) by comparison of the parental and Sub1-introgression lines (SwarnaSub1 and SavitriSub1) under SF. Compared to control condition SF reduced grain yield and tiller number and increased plant height and Sub1- introgression mostly matched these effects. SF increased ethylene production by over-expression of ACC-synthase and ACC-oxidase enzyme genes of panicle before anthesis in the parental lines. Expression of the genes changed with Sub1-introgression, where some enzyme isoform genes over-expressed after anthesis under SF. Activities of endosperm starch synthesizing enzymes SUS and AGPase declined concomitantly with rise ethylene production in the Sub1-introgressed lines resulting in low starch synthesis and accumulation of soluble carbohydrates in the developing spikelets. In conclusion, Sub1-introgression into the cultivars increased susceptibility to SF. Subjected to SF, the QTL promoted genesis of ethylene in the panicle at anthesis to the detriment of grain yield, while compromising with morphological features like tiller production and stem elongation.


1999 ◽  
Vol 5 (3) ◽  
pp. 223-228 ◽  
Author(s):  
C. Larrigaudiere ◽  
I. Recasens ◽  
J. Graell ◽  
M. Vendrell

Changes in 1-aminocyclopropane-1-carboxylic acid metabolism in apples ( Malus domestica Borkh cv Granny Smith) were studied in relation to cold storage. Emphasis was given to the differential re sponsiveness of fruits to cold treatment as a function of stage of maturity at harvest. Fruits were held at 1 or 20 °C for 30 days, respectively, or exposed to 1 °C for 10 days and then storaged at 20 °C for up to 30 days. Fruits at 20 °C showed typical climacteric behavior. Differences at 1 °C between maturity stages in ethylene production and ACC oxidase activity were abolished, which showed that cold treatment is an important inducer of climacteric rise in preclimacteric Granny Smith apples. At 1 °C, ethylene production was lower than at 20 °C and the maxima in production were similar for all the stages of maturity, but took place at different times which corresponded exactly to the initial differ ences in harvest dates. After the transfer to 20 °C, fruits exhibited similar behavior as regards ethyl ene production, ACC oxidase activity, and ACC and MACC levels in relation to a harmonization process which is discussed in this study.


Sign in / Sign up

Export Citation Format

Share Document