scholarly journals Introgression of Sub1 (SUB1) QTL in mega rice cultivars increases ethylene production to the detriment of grain- filling under stagnant flooding

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sandhya Rani Kuanar ◽  
Kutubuddin Ali Molla ◽  
Krishnendu Chattopadhyay ◽  
Ramani Kumar Sarkar ◽  
Pravat Kumar Mohapatra

AbstractIn the recent time, Submergence1 (Sub1)QTL, responsible for imparting tolerance to flash flooding, has been introduced in many rice cultivars, but resilience of the QTL to stagnant flooding (SF) is not known. The response of Sub1-introgression has been tested on physiology, molecular biology and yield of two popular rice cultivars (Swarna and Savitri) by comparison of the parental and Sub1-introgression lines (SwarnaSub1 and SavitriSub1) under SF. Compared to control condition SF reduced grain yield and tiller number and increased plant height and Sub1- introgression mostly matched these effects. SF increased ethylene production by over-expression of ACC-synthase and ACC-oxidase enzyme genes of panicle before anthesis in the parental lines. Expression of the genes changed with Sub1-introgression, where some enzyme isoform genes over-expressed after anthesis under SF. Activities of endosperm starch synthesizing enzymes SUS and AGPase declined concomitantly with rise ethylene production in the Sub1-introgressed lines resulting in low starch synthesis and accumulation of soluble carbohydrates in the developing spikelets. In conclusion, Sub1-introgression into the cultivars increased susceptibility to SF. Subjected to SF, the QTL promoted genesis of ethylene in the panicle at anthesis to the detriment of grain yield, while compromising with morphological features like tiller production and stem elongation.

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 995
Author(s):  
Mohammad Darvish ◽  
Habib Shirzad ◽  
Mohammadreza Asghari ◽  
Parviz Noruzi ◽  
Abolfazl Alirezalu ◽  
...  

Ethylene is the most important factor playing roles in senescence and deterioration of harvested crops including cut flowers. Brassinosteroids (BRs), as natural phytohormones, have been reported to differently modulate ethylene production and related senescence processes in different crops. This study was carried out to determine the effects of different levels of 24-epibrassinolide (EBL) on ACC oxidase enzyme activity, the final enzyme in ethylene biosynthesis pathway, vase life, and senescence rate in lisianthus cut flowers. Harvested flowers were treated with EBL (at 0, 3, 6, and 9 µmol/L) and kept at 25 °C for 15 days. The ACC oxidase activity, water absorption, malondialdehyde (MDA) production and vase solution absorption rates, chlorophyll and anthocyanin contents, and the vase life of the flowers were evaluated during and at the end of storage. EBL at 3 µmol/L significantly (p ≤ 0.01) enhanced the flower vase life by decreasing the ACC oxidase activity, MDA production and senescence rates, and enhancing chlorophyll and anthocyanin biosynthesis and accumulation, relative water content, and vase solution absorption rates. By increasing the concentration, EBL negatively affected the flower vase life and postharvest quality probably via enhancing the ACC oxidase enzyme activity and subsequent ethylene production. EBL at 6 and 9 µmol/L and in a concentration dependent manner, enhanced the ACC oxidase activity and MDA production rate and decreased chlorophyll and anthocyanin accumulation and water absorption rate. The results indicate that the effects of brassinosteroids on ethylene production and physiology of lisianthus cut flowers is highly dose dependent.


2021 ◽  
Author(s):  
Sudhanshu Sekhar ◽  
Jitendra Kumar ◽  
Soumya Mohanty ◽  
Niharika Mohanty ◽  
Rudraksh Shovan Panda ◽  
...  

Abstract High grain number is positively correlated with grain yield in rice, but it is compromised because of poor filling of basal spikelets in dense panicle bearing numerous spikelets. The phenomenon that turns the basal spikelets of compact panicle sterile in rice is largely unknown. In order to understand the factor(s) that possibly determines such spikelet sterility in compact panicle cultivars, QTLs and candidate genes were identified for spikelet fertility percentage, panicle compactness and ethylene production that significantly influence the grain filling using recombinant inbred lines developed from a cross between indica rice cultivars, PDK Shriram (compact, high spikelet number) and Heera (lax, low spikelet number). Novel QTLs, qSFP1.1, qSFP3.1 and qSFP6.1 for spikelet fertility percentage; qIGS3.2 and qIGS4.1 for panicle compactness; and qETH1.2, qETH3.1 and qETH4.1 for ethylene production were consistently identified in both kharif seasons of 2017 and 2018. The comparative expression analysis of candidate genes like ERF3, AP2-like ethylene-responsive transcription factor, EREBP, GBSS1, E3 ubiquitin-protein ligase GW2, and LRR receptor-like serine/threonine-protein kinase ERL1 associated with identified QTLs revealed their role in poor grain filling of basal spikelets in dense panicle. These candidate genes thus could be important for improving grain filling in compact-panicle rice cultivars through biotechnological interventions.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Hengdong Zhang ◽  
Jiana Chen ◽  
Shuanglü Shan ◽  
Fangbo Cao ◽  
Guanghui Chen ◽  
...  

Abstract Background Amylose accumulation in rice grains is controlled by genetic and environmental factors. Amylose content is a determinant factor of rice quality in terms of cooking and eating. Great variations in amylose content in indica rice cultivars have been observed. The current study was to identify differentially expressed proteins in starch and sucrose metabolism and glycolysis/gluconeogenesis pathways and their relationships to amylose synthesis using two rice cultivars possess contrasting phenotypes in grain amylose content. Results Synthesis and accumulation of amylose in rice grains significantly affected the variations between rice cultivars in amylose contents. The high amylose content cultivar has three down-regulated differentially expressed proteins, i.e., LOC_Os01g62420.1, LOC_Os02g36600.1, and LOC_Os08g37380.2 in the glycolysis/gluconeogenesis pathway, which limit the glycolytic process and decrease the glucose-1-phosphate consumption. In the starch and sucrose metabolic pathway, an up-regulated protein, i.e., LOC_Os06g04200.1 and two down-regulated proteins, i.e., LOC_Os05g32710.1 and LOC_Os04g43360.1 were identified (Figure 4). Glucose-1-phosphate is one of the first substrates in starch synthesis and glycolysis that are catalyzed to form adenosine diphosphate glucose (ADPG), then the ADPG is catalyzed by granule-bound starch synthase I (GBSS I) to elongate amylose. Conclusions The results indicate that decreasing the consumption of glucose-1-phosphate in the glycolytic process is essential for the formation of ADPG and UDPG, which are substrates for amylose synthesis. In theory, amylose content in rice can be regulated by controlling the fate of glucose-1-phosphate.


1991 ◽  
Vol 27 (2) ◽  
pp. 127-135 ◽  
Author(s):  
S. Fukai ◽  
L. Li ◽  
P. T. Vizmonte ◽  
K. S. Fischer

SummaryThe objective of this study was to identify whether grain yield in four contrasting rice cultivars is limited by supply of assimilate to fill the grains or by sink capacity to accept the assimilate. Grain yield was limited mostly by sink capacity, with little variation in single grain weight among cultivars, but an old cultivar showed some ability to adjust single grain weight. Sink capacity was very sensitive to variation in assimilate supply immediately after anthesis. Reduction in assimilate supply in the anthesis to early grain filling period reduced filled grain percentage and grain yield, particularly in high yielding cultivars with a large number of grains per panicle.


2016 ◽  
Vol 6 (19) ◽  
pp. 137-149
Author(s):  
A. Vahdati-Rad ◽  
M. Esfahani ◽  
GH. Mohsenabadi ◽  
A. Sabouri ◽  
A. Aalami ◽  
...  

1995 ◽  
Author(s):  
William Woodson ◽  
Shimon Mayak ◽  
Haim Rabinowitch

The senescence of carnation (Dianthus caryophyllus L.) flowers is associated with increased production of the phytohormone ethylene, which in turn serves to initiate and regulate the processes involved in programmed petal death. We investigated the regulation of ethylene production and petal senescence in carnation. Several carnation genotypes were identified that exhibited extended vase-life in comparison to flowers from typical commercial cultivars. The capacity of these genotypes to produce ethylene during postharvest vase-life and to respond to exogenous ethylene was investigated. Several genotypes, represented by 'Sandrosa' and 87-37G produced little ethylene durig their postharvest vase-life and as a result failed to exhibit the symptoms (in-rolling and wilting) typical of flowers producing elevated levels of ethylene. These genotypes were further separated by their capacity to respond to exogenous ethylene by both increased ethylene synthesis and premature petal senescence. In one case a genotype (799) was identified that was not capable of responding to exogenous ethylene by either increased ethylene production or premature petal senescence. The regulation of ethylene production during petal senescence was investigated both at the enzyme and gene levels. A full length cDNA was identified for the petal senescence-related ACC synthase gene. Utilizing this, and other ethylene biosynthetic pathway cDNA probes, an increase in both ACC synthase and ACC oxidase mRNAs were detected following ethylene treatment. An increase in ACC oxidase mRNA and enzyme activity was detected within 2-3 h following ethylene treatment, indicating the expression of this gene is an early response to ethylene. An investigation into the expression of novel proteins during petal senescence revealed a number of polypeptides increased in abundance and possibly play a role in the regulation or biochemical processes of senescence. One polypeptide of 70 kDa was identified as being encoded by the previously characterized gene SR12 and possibly represents a b-galactosidase involved in the remobilization of carbohydrates during senescence.


2017 ◽  
Vol 39 (5) ◽  
Author(s):  
AURI BRACKMANN ◽  
VAGNER LUDWIG ◽  
FABIO RODRIGO THEWES ◽  
ROGERIO OLIVEIRA ANESE ◽  
ERANI ELISEU SCHULTZ ◽  
...  

ABSTRACT The aim of this work was to evaluate the effect of ethanol and two nitric oxide dose applications on the maintenance of the post-storage quality of ‘Galaxy’ apple during storage under controlled atmosphere (CA). Treatments evaluated were: [1] 1.2 kPa O2 + 2.0 kPa CO2; [2] CA + 20 µL L-1 of nitric oxide, [3] CA + 40 µL L-1 of nitric oxide; [4] CA + 1 ml of ethanol kg-1 fruit. Fruits received treatments before storage and were kept under CA during eight months and seven days of storage at 20 °C. Fruits had been kept on CA for eight months and seven days at 20° C. Fruits treated with ethanol showed higher ethylene production, low flesh firmness, high flesh breakdown, mealiness and acetaldehyde production. Fruits treated with 40 µL L-1 nitric oxide showed lower ethylene production, respiration rate and ACC oxidase ( (1-aminocyclopropane-1-carboxylic acid) oxidase enzyme activity. Apples treated with 20 uL L-1 nitric oxide showed higher ethylene production, respiration rate, internal ethylene concentration CO2 and ethanol concentration. Ethanol and nitric oxide application before storage have no benefits in maintaining fruit quality after storage under CA due to lower flesh firmness, higher mealiness incidence, flesh breakdown and decay incidence.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 460B-460
Author(s):  
Sven Verlinden ◽  
William R. Woodson

High-temperature treatments can be used for disinfestation of a variety of horticultural crops. Carnation flowers were subjected to a heat treatment in order to determine if it is a viable option for disinfestation of this crop. Flowers were exposed to 45°C for 24 hr in the dark, while control flowers were held at RT for 24 hr in the dark. Subsequently, the flowers were held at RT in the light and monitored for ethylene production, an indicator of imminent floral senescence. In the heat-treated flowers, the ethylene climacteric occurred at 96 hr after the heat treatment, a delay of 12 hr when compared to the control. Peak ethylene production was decreased by 25% to 30% in heat-treated flowers. Northern blot analysis of the ethylene biosynthetic pathway genes, ACC synthase, and ACC oxidase, showed that the expression of these genes is delayed by 8 to 16 hr in heat-treated flowers. This indicates that the delay and decrease in ethylene production is at least, in part, due to a delay or reduction in the expression of these genes. Further investigation revealed a decreased responsiveness of the petals to ethylene. Petals from heat-treated and control flowers were exposed to 1 ppm ethylene for 0, 0.5, 1, 2, 4, 6, 12, and 32 hr. The heat-treated petals again showed a delay and a decrease in maximum ethylene production after exposure to ethylene. A delay in expression of ACC synthase and ACC oxidase was also observed. The beneficial effects of exposing carnation flowers to high temperatures, a delay in ethylene production, and reduced responsiveness to ethylene, suggest that heat treatments could be used for disinfestation of this crop.


2007 ◽  
Vol 132 (1) ◽  
pp. 120-125 ◽  
Author(s):  
Satoru Kondo ◽  
Hiroko Yamada ◽  
Sutthiwal Setha

The effects of n-propyl dihydrojasmonate (PDJ), which is a jasmonic acid derivative, on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase activities, their gene expressions, and ethylene productions in ‘La France’ pears (Pyrus communis L.) were investigated. The fruit was harvested 156 days after full bloom, stored at 4 °C for 15 days, ripened at 20 °C, and then dipped into 0.39 mm PDJ solution at the preclimacteric stage (0 day of ripening at 20 °C) or the climacteric stage (9 days of ripening at 20 °C). In the skin of the PDJ-treated fruit at the preclimacteric stage, the expressions of ACC synthase (ACS)1 and ACC oxidase (ACO)1 were higher than the expressions of those in the untreated control. Ethylene production also increased in the PDJ-treated fruit. In contrast, the accumulation of the ACS1 messenger RNA (mRNA) levels in the skin and an increase of ethylene production were observed in the untreated control fruit at the climacteric stage, although the levels of mRNAs hybridized with ACO1 were not different between the PDJ-treated fruit and untreated control. The endogenous jasmonic acid levels in the skin increased in the PDJ-treated fruit regardless of the application times of PDJ. These results indicate that ACS1 may be an ACC synthase gene that is induced by jasmonates in pears, and that system 2 ethylene may be regulated by jasmonates.


1978 ◽  
Vol 26 (3) ◽  
pp. 233-249
Author(s):  
J.H.J. Spiertz ◽  
H. van de Haar

The crop performance of semi-dwarf wheat cv. (Maris Hobbit) was compared with a standard-ht. cv. (Lely) at various levels of N supply. The grain yields of Maris Hobbit were considerably higher due to a higher number of grains and a heavier grain wt. Owing to the higher grain yield and a lower stem wt. the harvest index of Maris Hobbit was higher than that of Lely (0.47 and 0.40, resp.). The content of water-soluble carbohydrates in the stems of both cv. appeared to be very high until 3 wk after anthesis, despite the occurrence of low light intensities. Lely used more assimilates for structural stem material than did Maris Hobbit. Quantity and date of N application greatly affected grain number, but affected grain wt. to a lesser extent. Thus within each cv. grain number/m2 was the main determinant of grain yield. Late N dressings promoted photosynthetic production, grain wt. and CP content of the grain. The low CP contents of the grain were attributed to the low temp. during the grain-filling period. The distribution of N within the plant was only slightly influenced by N dressings and cv. differences. N harvest index ranged from 0.74 to 0.79. Grain N was derived from the vegetative organs (63-94%) and from uptake after anthesis (6-37%). The importance of carbohydrate and N economy for grain yield are discussed. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Sign in / Sign up

Export Citation Format

Share Document