Anomalous Water Relations in Copper-Deficient Wheat Plants

1976 ◽  
Vol 3 (2) ◽  
pp. 229 ◽  
Author(s):  
RD Graham

Leaf water potential, diffusive resistance, relative water content, weekly water use, yields and head bending were measured on wheat plants subjected to four copper levels (0, 0.4, 0.8 or 4.0 mg Cu per pot) and two water levels (6 or 12% soil water content). Severe copper deficiency (Cu 0) resulted in no grain yield, wilting, increased leaf diffusive resistance and, at the same time, increased leaf water potential relative to plants receiving 4.0 mg Cu (Cu 4.0). Water supply effects were observed but there was no interaction between copper and water treatments. Mild copper deficiency (Cu 0.4, Cu 0.8) resulted in small yield decreases, relative to Cu 4.0, and increased head bending towards maturity. It is concluded that wilting, characteristic of copper-deficient plants, is due to structural weakness (decreased lignification) and not to the water status of the plants; also, increased leaf diffusive resistance is due to a specific effect of copper deficiency on guard cells and not to decreased leaf water potential.

2014 ◽  
Vol 1 (1) ◽  
pp. 1013-1072
Author(s):  
D. R. Smart ◽  
S. Cosby Hess ◽  
R. Plant ◽  
O. Feihn ◽  
H. Heymann ◽  
...  

Abstract. The geoscience component of terroir in wine grape production continues to be criticized for its quasi-mystical nature, and lack of testable hypotheses. Nonetheless, recent relational investigations are emerging and most involve water availability as captured by available water capacity (AWC, texture) or plant available water (PAW) in the root zone of soil as being a key factor. The second finding emerging may be that the degree of microscale variability in PAW and other soil factors at the vineyard scale renders larger regional characterizations questionable. Cimatic variables like temperature are well mixed, and its influence on wine characteristic is fairly well established. The influence of mesogeology on mesoclimate factors has also been characterized to some extent. To test the hypothesis that vine water status mirrors soil water availability, and controls fruit sensory and chemical properties at the vineyard scale we examined such variables in a iconic, selectively harvested premium winegrape vineyard in the Napa Valley of California during 2007 and 2008 growing seasons. Geo-referenced data vines remained as individual study units throughout data gathering and analysis. Cartographic exercises using geographic information systems (GIS) were used to vizualize geospatial variation in soil and vine properties. Highly significant correlations (P < 0.01) emerged for pre-dawn leaf water potential (ΨPD), mid-day leaf water potential (ΨL) and PAW, with berry size, berry weight, pruning weights (canopy size) and soluble solids content (°Brix). Areas yielding grapes with perceived higher quality had vines with (1) lower leaf water potential (LWP) both pre-dawn and mid-day, (2) smaller berry diameter and weight, (3) lower pruning weights, and (4) higher °Brix. A trained sensory panel found grapes from the more water-stressed vines had significantly sweeter and softer pulp, absence of vegetal character, and browner and crunchier seeds. Metabolomic analysis of the grape skins showed significant differences in accumulation of amino acids and organic acids. Data vines were categorized as non-stressed (ΨPD ≥ −7.9 bars and ΨL ≥ −14.9 bars) and stressed (ΨPD ≤ −8.0 bars and ΨL ≤ −15.0 bars) and subjected to analysis of variance. Significant separation emerged for vines categorized as non-stressed versus stressed at véraison, which correlated to the areas described as producing higher and lower quality fruit. This report does not advocate the use of stress levels herein reported. The vineyard was planted to a vigorous, deep rooted rootstock (V. rupestris cv. St. George), and from years of management is known to be able to withstand stress levels of the magnitude we observed. Nonetheless, the results may suggest there is not a linear relationship between physiological water stress and grape sensory characteristics, but rather the presence of an inflection point controlling grape composition as well as physiological development.


1984 ◽  
Vol 102 (3) ◽  
pp. 687-693 ◽  
Author(s):  
Alejandra Paez ◽  
H. Hellmers ◽  
B. R. Strain

SummaryIf atmospheric carbon dioxide concentration continues to increase, plant growth and crop yield could be affected. New Yorker and Better Boy cultivars of tomato (Lycopersicon esculentum) were used to investigate possible intraspecific variation in the response of crop species to increased CO2. Because precipitation and temperature are predicted to change with the increasing atmospheric CO2 concentration, the response of the two cultivars to the interaction between CO2 and water stress was also examined. Seeds of the two cultivars were germinated and grown under controlled environmental conditions, in either 350 or 675 μ1 CO2/1.The plant water status of the two cultivars was inherently different but was little affected by the CO2 concentration when the plants were well watered. When water was withheld for 5 days the total leaf water potential and osmotic potential decreased in both CO2 treatments but less rapidly in high CO2 than in low. Under low CO2 total leaf water potential decreased to a lower value than osmotic potential. The differences were due, at least in part, to the reduced stomatal conductance and transpiration rate under high CO2.Increased CO2 ameliorated the detrimental effects of drought stress on plant growth. The results indicate that increased CO2 could differentially affect the relative drought resistance of species cultivars.


1993 ◽  
Vol 120 (3) ◽  
pp. 347-351 ◽  
Author(s):  
M. C. Ruíz-Sánchez ◽  
M. J. Sánchez-Blanco ◽  
J. Planes ◽  
J. J. Alarcón ◽  
A. Torrecillas

SUMMARYAlmond trees (Amygdalus communis L. cvs Garrigues and Ramillete) were grown in the field under non-irrigated conditions in Murcia, Spain. Seasonal variations in leaf water potential components were studied in 1989. Predawn leaf water potential showed high values in both cultivars, due to the absence of soil water stress. Pressure-volume curve analysis indicated that the leaf osmotic potential at full saturation (Ψo(sat)) for cv. Garrigues remained fairly constant throughout the season. Bulk modulus of elasticity (E) showed, in both cultivars, a tendency to decrease as the season progressed. E values were higher in Ramillete than in Garrigues. The relative water content at the turgor loss point (RWCtlp) seemed to be controlled by E values. The larger relative apoplastic water content (RWCa found in Ramillete might have allowed it to retain more water at low leaf water potentials than Garrigues. These facts would support the suggestion that Ramillete is a more drought-resistant cultivar than Garrigues.


1998 ◽  
Vol 46 (1) ◽  
pp. 135 ◽  
Author(s):  
Masako Mishio ◽  
Naoki Kachi

Stomatal conductance and leaf water potential at around noon, pre-dawn leaf water potential, pressure–volume parameters, and leaf structural characteristics including leaf thickness, leaf dry mass per unit area and turgid leaf water content per unit area were compared between a coastal shrub species, Eurya emarginata (Thunb.) Makino and an inland shrub species, E. japonica Thunb. The pre-dawn leaf water potential was only slightly lower in E. emarginata than in E. japonica, and the environmental conditions such as the photosynthetic photon flux density and the vapour pressure deficit did not differ obviously between the two habitats. No apparent differences were observed in the pressure–volume parameters between the two species. On the other hand, E. emarginata had much higher stomatal conductance and significantly thicker leaves with higher turgid leaf water content per unit area than E. japonica. The thicker leaf with higher water content on an area basis in E. emarginata maintains adequate leaf turgor pressure against a higher rate of transpiration.


Sign in / Sign up

Export Citation Format

Share Document