Partitioning of photosynthetic carbohydrates in leaves of salt-stressed olive plants

1998 ◽  
Vol 25 (5) ◽  
pp. 571 ◽  
Author(s):  
Riccardo Gucci ◽  
Annick Moing ◽  
Elisabetta Gravano ◽  
Jean Pierre Gaudillère

Changes in photosynthetic carbon partitioning were determined, during 14CO2 pulse-chase experiments, in fully-expanded leaves of olive (Olea europaea L. cv. Frantoio) plants treated in containers with 100 mM NaCl for 5 weeks and compared with partitioning in leaves of untreated plants. Salt stress caused an increase in the radioactivity partitioned into mannitol and a decrease of that recovered as glucose. The radioactivity in sucrose was significantly reduced in salt-treated plants after 19.5 min of chase. There was no difference between the two treatments in the radioactivity found in fructose and galactose, whereas a significant decrease in the radioactivity found in stachyose and raffinose of salt-treated leaves was observed after 19.5 min chase. The radioactivity incorporated into starch was 11 and 16% of the total in control and salt-treated leaves respectively. There were no significant differences in the leaf pools of soluble carbohydrates over the chase period, except for mannitol which increased in the leaf tissue of salt-treated plants. Over the course of the diurnal period, and under high irradiance conditions, the leaf mannitol content increased more markedly in salt-treated plants than in the controls. In contrast, contents of other nonstructural carbohydrates were not affected by the 100 mM NaCl treatment.




Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 345
Author(s):  
Simona Carfagna ◽  
Giovanna Salbitani ◽  
Michele Innangi ◽  
Bruno Menale ◽  
Olga De Castro ◽  
...  

Pancratium maritimum (Amaryllidaceae) is a bulbous geophyte growing on coastal sands. In this study, we investigated changes in concentrations of metabolites in the root and leaf tissue of P. maritimum in response to mild salt stress. Changes in concentrations of osmolytes, glutathione, sodium, mineral nutrients, enzymes, and other compounds in the leaves and roots were measured at 0, 3, and 10 days during a 10-day exposure to two levels of mild salt stress, 50 mM NaCl or 100 mM NaCl in sandy soil from where the plants were collected in dunes near Cuma, Italy. Sodium accumulated in the roots, and relatively little was translocated to the leaves. At both concentrations of NaCl, higher values of the concentrations of oxidized glutathione disulfide (GSSG), compared to reduced glutathione (GSH), in roots and leaves were associated with salt tolerance. The concentration of proline increased more in the leaves than in the roots, and glycine betaine increased in both roots and leaves. Differences in the accumulation of organic osmolytes and electron donors synthesized in both leaves and roots demonstrate that osmoregulatory and electrical responses occur in these organs of P. maritimum under mild salt stress.





2005 ◽  
Vol 53 (2) ◽  
pp. 229-239 ◽  
Author(s):  
F. A: Faheed ◽  
A. M. Hassanein ◽  
M. M. Azooz

A gradual increase in NaCl concentration in the growth medium was used as a strategy to adapt sorghum plants (Sorghum bicolor L.) to relatively high concentrations of NaCl. over a period of 15 days, a low percentage (22.2%) of sorghum seeds germinated in 200 mM NaCl, but most of the seedlings obtained (85.8%) died. On the other hand, plants subjected to adaptation by a gradual increase in NaCl concentration in the growth medium became capable of growth in soil containing 300 mM NaCl. In general, salinization induced a highly significant decrease in fresh and dry masses, and in the pigment content of sorghum seedlings. The content of free amino acids and soluble carbohydrates increased with a rise in the salinization level, especially in the adapted sorghum plants. The adapted plants contained less Na+ but more K+ compared to the unadapted plants, especially when the plants were subjected to relatively high NaCl concentration. Plants adapted in soil showed a new peroxidase isoenzyme form (POX-4). The peroxidase band POX-1 was detected under salt stress in both adapted and unadapted plants. Under salt stress, indophenol oxidase and glutamate oxaloacetate transaminase expressed new isoenzyme forms, IPOX-3 and IPOX-5, and GOT-2 and GOT-3, respectively. The induction of salt tolerance by a gradual increase in NaCl concentration for three weeks was recommended to overcome the inhibition of seed germination in saline soil.



2018 ◽  
Vol 8 (1) ◽  
pp. 578-584
Author(s):  
Dhia Gharabi ◽  
Benchaben Hellal ◽  
Abdelkrim Hassani


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2544
Author(s):  
Sami Hannachi ◽  
Stefaan Werbrouck ◽  
Insaf Bahrini ◽  
Abdelmuhsin Abdelgadir ◽  
Hira Affan Siddiqui

Previously, an efficient regeneration protocol was established and applied to regenerate plants from calli lines that could grow on eggplant leaf explants after a stepwise in vitro selection for tolerance to salt stress. Plants were regenerated from calli lines that could tolerate up to 120 mM NaCl. For further in vitro and in vivo evaluation, four plants with a higher number of leaves and longer roots were selected from the 32 plants tested in vitro. The aim of this study was to confirm the stability of salt tolerance in the progeny of these four mutants (‘R18’, ‘R19’, ‘R23’ and ‘R30’). After three years of in vivo culture, we evaluated the impact of NaCl stress on agronomic, physiological and biochemical parameters compared to the parental control (‘P’). The regenerated and control plants were assessed under in vitro and in vivo conditions and were subjected to 0, 40, 80 and 160 mM of NaCl. Our results show significant variation in salinity tolerance among regenerated and control plants, indicating the superiority of four regenerants (‘R18’, ‘R19’, ‘R23’ and ‘R30’) when compared to the parental line (‘P’). In vitro germination kinetics and young seedling growth divided the lines into a sensitive and a tolerant group. ‘P’ tolerate only moderate salt stress, up to 40 mM NaCl, while the tolerance level of ‘R18’, ‘R19’, ‘R23’ and ‘R30’ was up to 80 mM NaCl. The quantum yield of PSII (ΦPSII) declined significantly in ‘P’ under salt stress. The photochemical quenching was reduced while nonphotochemical quenching rose in ‘P’ under salt stress. Interestingly, the regenerants (‘R18’, ‘R19’, ‘R23’ and ‘R30’) exhibited high apparent salt tolerance by maintaining quite stable Chl fluorescence parameters. Rising NaCl concentration led to a substantial increase in foliar proline, malondialdehyde and soluble carbohydrates accumulation in ‘P’. On the contrary, ‘R18’, ‘R19’, ‘R23’ and ‘R30’ exhibited a decline in soluble carbohydrates and a significant enhancement in starch under salinity conditions. The water status reflected by midday leaf water potential (ψl) and leaf osmotic potential (ψπ) was significantly affected in ‘P’ and was maintained a stable level in ‘R18’, ‘R19’, ‘R23’ and ‘R30’ under salt stress. The increase in foliar Na+ and Cl− content was more accentuated in parental plants than in regenerated plants. The leaf K+, Ca2+ and Mg2+ content reduction was more aggravated under salt stress in ‘P’. Under increased salt concentration, ‘R18’, ‘R19’, ‘R23’ and ‘R30’ associate lower foliar Na+ content with a higher plant tolerance index (PTI), thus maintaining a normal growth, while foliar Na+ accumulation was more pronounced in ‘P’, revealing their failure in maintaining normal growth under salinity stress. ‘R18’, ‘R19’, ‘R23’ and ‘R30’ showed an obvious salt tolerance by maintaining significantly high chlorophyll content. In ‘R18’, ‘R19’, ‘R23’ and ‘R30’, the enzyme scavenging machinery was more performant in the roots compared to the leaves. Salt stress led to a significant augmentation of catalase, ascorbate peroxidase and guaiacol peroxidase activities in the roots of ‘R18’, ‘R19’, ‘R23’ and ‘R30’. In contrast, enzyme activities were less enhanced in ‘P’, indicating lower efficiency to cope with oxidative stress than in ‘R18’, ‘R19’, ‘R23’ and ‘R30’. ACC deaminase activity was significantly higher in ‘R18’, ‘R19’, ‘R23’ and ‘R30’ than in ‘P’. The present study suggests that regenerated plants ‘R18’, ‘R19’, ‘R23’ and ‘R30’ showed an evident stability in tolerating salinity, which shows their potential to be adopted as interesting selected mutants, providing the desired salt tolerance trait in eggplant.



Author(s):  
Mohammad Akbari ◽  
Ramesh katam ◽  
Rabab Husain ◽  
Mostafa Farajpour ◽  
Silvia Mazzuca ◽  
...  

Salinity substantially affects plant growth and crop productivity worldwide. Plants adopt several biochemical mechanisms including regulation of antioxidant biosynthesis to protect themselves against the toxic effects induced by the stress. One-year-old Pistachio rootstock exhibiting different degrees of salinity tolerance were subjected to sodium chloride induced salt stress to identify genetic diversity among cultivated pistachio rootstock for their antioxidant responses, and to determine the correlation of these enzymes to salinity stress. Leaves and roots were harvested following NaCl-induced stress. Results show that a higher concentration of NaCl treatment induced oxidative stress in the leaf tissue and to a lesser extent in the roots. Both tissues showed an increase in ascorbate peroxidase, superoxide dismutase, catalase, glutathione reductase, peroxidase and malondialdehyde. Responses of antioxidant enzymes were cultivar dependent, as well as temporal and dependent on the salinity level. Linear and quadratic regression model analysis revealed significant correlation of enzyme activities to salinity treatment in both tissues. The variation in salinity tolerance reflected their capabilities in orchestrating antioxidant enzymes at the roots and harmonized across the cell membranes of the leaves. The study provides a better understanding of root and leaf coordination in regulating the antioxidant enzymes to NaCl induced oxidative stress.



HortScience ◽  
2003 ◽  
Vol 38 (2) ◽  
pp. 222-227 ◽  
Author(s):  
Martin P.N. Gent

Solution electrical conductivity (EC) and the supply of nitrate in proportion to other elements (nitrate supply ratio) should effect tissue composition of lettuce (Lactuca sativa L.) grown in hydroponic solution. These parameters were varied in several series of successive plantings in greenhouses in the northeast United States. In 1996, when the treatments differed only in EC, 0.65 and 0.9 dS·m-1, but not in nitrate supply ratio, leaf tissue had more nitrate and total reduced-N and lettuce grew faster in the solution with higher EC. Over four series of plantings in 1997 and 1998, the nitrate supply ratio of a low-N treatment was only 60% of that for a high-N treatment, and EC was varied from 1.2 to 2.0 dS·m-1. In 1997 and 1998, tissue nitrate was lower in the low-N treatment only when EC was less than in the high-N treatment. However, under irradiance greater than 10 MJ m-2 per day, the lower EC also slowed growth. Stepwise regression over data from all experiments showed leaf nitrate was primarily a function of EC, and a term that described the interaction between irradiance and EC. Due to selective uptake by the plants, the ratio of elements in the recirculating solution differed from the ratio in which they were supplied. Under irradiance less than 10 MJ m-2 per day and solution EC greater than 1.5 dS·m-1, nitrate accumulated in solution to a concentration greater than expected from simple dilution of the concentrates. Tissue nitrate was also related to solution nitrate, increasing by 0.08-0.09 mg·g-1 dry weight per 1 mg·L-1 increase in solution nitrate. To prevent a rise in tissue and solution nitrate under low irradiance, both solution EC and nitrate supply ratio had to be reduced by about one-third, compared to the conditions required for rapid growth under high irradiance.



HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1079A-1079
Author(s):  
Devi Prasad V. Potluri

Two cultivars of sweetpotato [Ipomoea batatas (L.) Lam.], Commensal and Salyboro, were subjected to salt stress using axillary bud cultures. The salt levels ranged from 0–150 mM. After 10 weeks of growth, plantlet shoot height, dry weight, number of nodes, levels of proline, soluble carbohydrate, and protein; and metal ions sodium, potassium, magnesium, and calcium, were measured. In both cultivars, proline accumulation was higher in the shoot. There was a positive correlation between the increase in soluble carbohydrates and proteins in `Commnesal', but not in `Salyboro'. More sodium accumulated in the shoots of `Salyboro' compared to `Commensal'. The accumulation of sodium reduced the calcium and potassium, but not magnesium levels. Increase in sodium levels correlated with the increase in soluble carbohydrate levels is `Salyboro', but not in `Commensal'. A similar trend was evident with praline and sodium accumulation. Based on these and previous results, the cultivar `Salyboro' appears to be more susceptible to salt stress.



Sign in / Sign up

Export Citation Format

Share Document