The interplay between limiting processes in C3 photosynthesis studied by rapid-response gas exchange using transgenic tobacco impaired in photosynthesis

1998 ◽  
Vol 25 (8) ◽  
pp. 859 ◽  
Author(s):  
Sari Ruuska ◽  
T. John Andrews ◽  
Murray R. Badger ◽  
Graham S. Hudson ◽  
Agu Laisk ◽  
...  

A gas-exchange system with a rapid response time was used to study the interplay between rate-limiting processes of C3 photosynthesis in wild-type tobacco (Nicotiana tabacum L. cv. W38) and transgenic tobaccos with antisense DNAs directed against the Rubisco small subunit (anti-SSu plants) or the chloroplast glyceraldehyde-3-phosphate dehydrogenase (anti-GAPDH plants). High ribulosebisphos-phate (RuBP) pools were generated in leaves by exposing them briefly to very low CO2, after which they were transferred to varying CO2 concentrations, and transient CO2 assimilation rates were measured within the first 2–3 s. Comparison of the transient (RuBP-saturated) and steady-state rates confirmed that the CO2 assimilation rate in anti-SSu plants was RuBP-saturated (i.e. Rubisco limited) at all intercellular CO2 partial pressures (Ci), and that, in anti-GAPDH plants, the transition from RuBP-saturation to RuBP-limitation occurred at lower assimilation rates and lower Ci as GAPDH activity was decreased. In addition, we investigated whether the integrated post-illumination CO2 uptake could be used as a non-destructive means of estimating RuBP pools in leaves. In wild-type plants there was generally a good agreement between RuBP pools extracted from leaves after rapid freeze-clamping and estimates made from post-illumination CO2 uptake. However, in the anti-SSu plants, the post- illumination CO2 uptake underestimated the actual RuBP content and the discrepancy became larger as the Rubisco content decreased. Possible explanations for this are discussed.


1988 ◽  
Vol 15 (2) ◽  
pp. 239 ◽  
Author(s):  
CB Osmond ◽  
V Oja ◽  
A Laisk

The consequences of acclimation from shade to sun and vice versa for regulated photosynthetic metabolism were examined in H. annuus. A rapid-response gas exchange system was used to assess changes in carboxylation-related parameters (mesophyll conductance, assimilatory charge and CO2 capacity) and to analyse oscillations in CO2 fixation following transfer to high CO2 concentration as a function of intercellular CO2 concentration and light intensity. Data showed a two- to threefold change in all carboxylation-related parameters during acclimation in either direction. Dynamic regulation of carboxylation, indicated by changes in oscillatory response as a function of CO2 concentration at light saturation, remained unchanged, consistent with concerted regulation of ribulose-1,5-bisphosphate carboxylase-oxygenase during acclimation. However, the light dependency of oscillations changed during acclimation from shade to sun, and the range of oscillation was closely tied to the maximum rate of steady-state photosynthesis at CO2 saturation. These data imply that changes in the light-absorbing and electron transport components of the photosynthetic apparatus underlie the shift in regulatory behaviour during acclimation.



2021 ◽  
Author(s):  
Han Bao ◽  
Matt Morency ◽  
Winda Rianti ◽  
Sompop Saeheng ◽  
Sanja Roje ◽  
...  

Photorespiration recovers carbon that would be otherwise lost following the oxygenation reaction of rubisco and production of glycolate. Photorespiration is essential in plants and recycles glycolate into usable metabolic products through reactions spanning the chloroplast, mitochondrion, and peroxisome. Catalase in peroxisomes plays an important role in this process by disproportionating H2O2 resulting from glycolate oxidation into O2 and water. We hypothesize that catalase in the peroxisome also protects against non-enzymatic decarboxylations between hydrogen peroxide and photorespiratory intermediates (glyoxylate and/or hydroxypyruvate). We test this hypothesis by detailed gas exchange and biochemical analysis of Arabidopsis thaliana mutants lacking peroxisomal catalase. Our results strongly support this hypothesis, with catalase mutants showing gas exchange evidence for an increased stoichiometry of CO2 release from photorespiration, specifically an increase in the CO2 compensation point, a photorespiratory-dependent decrease in the quantum efficiency of CO2 assimilation, increase in the 12CO2 released in a 13CO2 background and an increase in the post-illumination CO2 burst. Further metabolic evidence suggests this excess CO2 release occurred via the non-enzymatic decarboxylation of hydroxypyruvate. Specifically, the catalase mutant showed an accumulation of photorespiratory intermediates during a transient increase in rubisco oxygenation consistent with this hypothesis. Additionally, end products of alternative hypotheses explaining this excess release were similar between wild type and catalase mutants. Furthermore, the calculated rate of hydroxypyruvate decarboxylation in catalase mutant is much higher than that of glyoxylate decarboxylation. This work provides evidence that these non-enzymatic decarboxylation reactions, predominately hydroxypyruvate decarboxylation, can occur in vivo when photorespiratory metabolism is genetically disrupted.



Author(s):  
Yuji Suzuki ◽  
Keiki Ishiyama ◽  
Misaki Sugawara ◽  
Yuka Suzuki ◽  
Eri Kondo ◽  
...  

Abstract Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) limits the regeneration of ribulose 1,5-bisphosphate (RuBP) in the Calvin–Benson cycle. However, it does not always limit the rate of CO2 assimilation. In the present study, the effects of overproduction of GAPDH on the rate of CO2 assimilation under elevated [CO2] conditions, where the capacity for RuBP regeneration limits photosynthesis, were examined in transgenic rice (Oryza sativa). GAPDH activity was increased to 3.2- and 4.5-fold of the wild-type levels by co-overexpression of the GAPDH genes, GAPA and GAPB, respectively. In the transgenic rice plants, the rate of CO2 assimilation under elevated [CO2] conditions increased by approximately 10%, whereas that under normal and low [CO2] conditions was not affected. These results indicate that overproduction of GAPDH is effective in improving photosynthesis under elevated [CO2] conditions, although its magnitude is relatively small. By contrast, biomass production of the transgenic rice plants was not greater than that of wild-type plants under elevated [CO2] conditions, although starch content tended to increase marginally.



1985 ◽  
Vol 12 (5) ◽  
pp. 513 ◽  
Author(s):  
M Kuppers ◽  
ED Schulze

An empirical model of CO2 uptake and water loss of leaves is established using steady-state responses of gas exchange to climatic factors as input. From the model the response surface of net CO2 assimilation and leaf conductance to climate can be derived. The model consists of two submodels, one describing the response of CO2 uptake to light and temperature, the other describing the response of leaf conductance to temperature and humidity. Both submodels are joined via the linear relationship between CO2 uptake and leaf conductance at short-term (minutes) variation of irradiance. From the humidity response of leaf conductance and the 'demand function' (Raschke 1979) of CO2 uptake in the mesophyll, the effect of stomata on the diffusion of CO2 between leaf and air is determined. The model is tested by comparing measured and calculated diurnal courses of gas exchange for two plants of Pinus silvestris, differing in photosynthetic capacity due to different levels of magnesium nutrition. Applications and limitations of the model are discussed.



1979 ◽  
Vol 6 (4) ◽  
pp. 499 ◽  
Author(s):  
JA Browse ◽  
FI Dromgoole ◽  
JMA Brown

When free CO2 alone was present in the ambient medium, photosynthesis by Egeria densa Planch displayed an apparent Km of 77 μM. A light- and CO2-saturated rate of 100 μmol C (mg Chl)-1 h-1 was achieved only in 400 μM CO2(aq) [c. 1% CO2(g)]. The CO2 response data and other considerations suggest that, although the carboxylation and mesophyll resistances (3800 s m-1 and <9000 s m-1 respectively) are considerably higher than in aerial plant leaves, the boundary layer is the highest component (> 27 000 s m-1) of the total resistance. An increase in the total resistance of 7200 s m-1 between 0.02 and 0.21 atm O2 (2 and 21 kPa O2) is attributed to photorespiration. Closed and open circuit gas exchange experiments demonstrated that bicarbonate is taken up by the plant cells and does not act merely as a reservoir of inorganic carbon for production of CO2 at the plasmalemma. Bicarbonate stimulated photosynthesis, even when the free CO2 concentration was below the CO2 compensation point. The total resistance to bicarbonate uptake appears to be 8-12 times that for CO2 uptake presumably due to the processes of active uptake, transport and/or conversion to CO2 involved in bicarbonate but not CO2 assimilation.



1994 ◽  
Vol 21 (4) ◽  
pp. 475 ◽  
Author(s):  
JR Evans ◽  
SV Caemmerer ◽  
BA Setchell ◽  
GS Hudson

The CO2 transfer conductance in leaves quantifies the ease with which CO2 can diffuse from sub-stomatal cavities to sites of carboxylation within the chloroplast. The aim of this work was to test the hypothesis that the CO2 transfer conductance is proportional to the surface area of chloroplasts exposed to intercellular airspaces. We compared two genotypes, wild-type and transgenic tobacco, that had been transformed with an antisense gene directed at the mRNA of the Rubisco small subunit. Transgenic tobacco had lower rates of CO2 assimilation than wild-type but similar chlorophyll contents. Leaf anatomy was altered by growing plants in two different environments: a high daily irradiance in a growth cabinet (12 h photoperiod of 1 mmol quanta m-2 s-1) and a sunlit glasshouse. The growth cabinet gave at least twice the daily irradiance compared to the glasshouse. The CO2 transfer conductance was calculated from combined measurements of gas exchange and carbon isotope discrimination measured in 2% oxygen. Following gas exchange measurement, leaves were sampled for biochemical and anatomical measure- ment. In transgenic tobacco plants, Rubisco content was 35% of that found in the wild-type tobacco, the CO2 assimilation rate was 50% of the wild-type rate and the chlorophyll content was unaltered. While leaf mass per unit leaf area of transgenic tobacco was 82% of that of the wild-type, differences in leaf thickness and surface area of mesophyll cells exposed to intercellular airspace per unit leaf area (Smes) were small (92 and 87% of wild-type, respectively). Leaves grown in the growth cabinet under high daily irradiance were thicker (63%), had a greater Smes (41%) due to the development of thicker palisade tissue, had higher photosynthetic capacity (27%) and contained more chlorophyll (58%) and Rubisco (77%), than leaves from plants grown in the glasshouse. Irrespective of genotype or growth environment, CO2 transfer conductance varied in proportion to surface area of chloroplasts exposed to intercellular airspaces. While the method for calculating CO2 transfer conductance could not distinguish between limitations due to the gas or liquid phases, there was no reduction in CO2 transfer conductance associated with more closely packed cells, thicker leaves, nor with increasing chloroplast thickness in tobacco.



2019 ◽  
Author(s):  
Johannes Brändle ◽  
Norbert Kunert

Abstract Tree autotrophic respiratory processes, especially stem respiration or stem CO2 efflux (Estem), are important components of the forest carbon budget. Despite the efforts to investigate the controlling processes of Estem in the last years a considerable lack in our knowledge remains on the abiotic and biotic drivers affecting Estem dynamics. It has been strongly advocated that long-term measurements would shed light into those processes. The expensive scientific instruments needed to measure gas exchange has prevented from applying Estem measurements on a larger temporal and spatial scale. Here, we present an automated closed dynamic chamber system based on inexpensive and industrially broadly applied CO2 sensors reducing the costs for the sensing system to a minimum. The CO2 sensor was cross-calibrated with a commonly used gas exchange system in the laboratory and in the field, and we found very good accordance of these sensors. We tested the system under harsh tropical climatic conditions, characterized by heavy tropical rainfall events, extreme humidity, and temperatures, in a moist lowland forest in Malaysia. We recorded Estem of three Dyera costulata trees with our prototype over various days. The variation of Estem was large among the three tree individuals and varied by 7.5-fold. However, clear diurnal changes in Estem were present in all three tree individuals. One tree showed high diurnal variation in Estem and the relationship between Estem and temperature was characterized by a strong hysteresis. The large variations found within one single tree species highlights the importance of continuous measurement to quantify ecosystem carbon fluxes.



Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 663
Author(s):  
James Bunce

Attempts to identify crop genetic material with larger growth stimulation at projected elevated atmospheric CO2 concentrations are becoming more common. The probability of reductions in photosynthesis and yield caused by short-term variation in CO2 concentration within elevated CO2 treatments in the free-air CO2 enrichment plots raises the question of whether similar effects occur in glasshouse or indoor chamber experiments. These experiments were designed to test whether even the normal, modest, cyclic variation in CO2 concentration typical of indoor exposure systems have persistent impacts on photosynthesis and growth, and to explore mechanisms underlying the responses observed. Wheat, cotton, soybeans, and rice were grown from seed in indoor chambers at a mean CO2 concentration of 560 μmol mol−1, with “triangular” cyclic variation with standard deviations of either 4.5 or 18.0 μmol mol−1 measured with 0.1 s sampling periods with an open path analyzer. Photosynthesis, stomatal conductance, and above ground biomass at 20 to 23 days were reduced in all four species by the larger variation in CO2 concentration. Tests of rates of stomatal opening and closing with step changes in light and CO2, and tests of responses to square-wave cycling of CO2 were also conducted on individual leaves of these and three other species, using a leaf gas exchange system. Reduced stomatal conductance due to larger amplitude cycling of CO2 during growth occurred even in soybeans and rice, which had equal rates of opening and closing in response to step changes in CO2. The gas exchange results further indicated that reduced mean stomatal conductance was not the only cause of reduced photosynthesis in variable CO2 conditions.



2013 ◽  
Vol 48 (9) ◽  
pp. 1210-1219 ◽  
Author(s):  
Muhammad Iqbal ◽  
Muhammad Ashraf

The objective of this work was to assess the regulatory effects of auxin-priming on gas exchange and hormonal homeostasis in spring wheat subjected to saline conditions. Seeds of MH-97 (salt-intolerant) and Inqlab-91 (salt-tolerant) cultivars were subjected to 11 priming treatments (three hormones x three concentrations + two controls) and evaluated under saline (15 dS m-1) and nonsaline (2.84 dS m-1) conditions. The priming treatments consisted of: 5.71, 8.56, and 11.42 × 10-4 mol L-1 indoleacetic acid; 4.92, 7.38, and 9.84 × 10-4 mol L-1 indolebutyric acid; 4.89, 7.34, and 9.79 × 10-4 mol L-1 tryptophan; and a control with hydroprimed seeds. A negative control with nonprimed seeds was also evaluated. All priming agents diminished the effects of salinity on endogenous abscisic acid concentration in the salt-intolerant cultivar. Grain yield was positively correlated with net CO2 assimilation rate and endogenous indoleacetic acid concentration, and it was negatively correlated with abscisic acid and free polyamine concentrations. In general, the priming treatment with tryptophan at 4.89 × 10-4 mol L-1 was the most effective in minimizing yield losses and reductions in net CO2 assimilation rate, under salt stress conditions. Hormonal homeostasis increases net CO2 assimilation rate and confers tolerance to salinity on spring wheat.



2007 ◽  
Vol 7 ◽  
pp. 134-140 ◽  
Author(s):  
N. E. Grulke ◽  
E. Paoletti ◽  
R. L. Heath

We tested the effect of daytime chronic moderate ozone (O3) exposure, short-term acute exposure, and both chronic and acute O3exposure combined on nocturnal transpiration in California black oak and blue oak seedlings. Chronic O3exposure (70 ppb for 8 h/day) was implemented in open-top chambers for either 1 month (California black oak) or 2 months (blue oak). Acute O3exposure (~1 h in duration during the day, 120–220 ppb) was implemented in a novel gas exchange system that supplied and maintained known O3concentrations to a leaf cuvette. When exposed to chronic daytime O3exposure, both oaks exhibited increased nocturnal transpiration (without concurrent O3exposure) relative to unexposed control leaves (1.8× and 1.6×, black and blue oak, respectively). Short-term acute and chronic O3exposure did not further increase nocturnal transpiration in either species. In blue oak previously unexposed to O3, short-term acute O3exposure significantly enhanced nocturnal transpiration (2.0×) relative to leaves unexposed to O3. California black oak was unresponsive to (only) short-term acute O3exposure. Daytime chronic and/or acute O3exposures can increase foliar water loss at night in deciduous oak seedlings.



Sign in / Sign up

Export Citation Format

Share Document