Association Between Concentration of Organic Nutrients in the Grain, Endosperm Cell Number and Grain Dry Weight Within the Ear of Wheat

1982 ◽  
Vol 9 (1) ◽  
pp. 83 ◽  
Author(s):  
BK Singh ◽  
CF Jenner

The present investigation was conducted to examine the association between the concentrations of sugars and amino acids in the grain, cell number in the endosperm and final dry weights of grains at various positions within the ear of wheat. Variation in the grain weight within a spikelet or between spikelets was dependent upon the number of cells formed in the endosperm. Concentrations of assimilates measured in the grain, however, showed either no relationship or an inverse relationship with the endosperm cell numbers. Variation in cell number in the endosperm between spikelets inserted at different positions on the rachis was not related to the carbohydrate concentration in the sections of rachis bearing the respective spikelets.

1984 ◽  
Vol 11 (3) ◽  
pp. 151 ◽  
Author(s):  
BK Singh ◽  
CF Jenner

The association between endosperm cell number and grain dry weight, and the dependence of endosperm cell division on the availability of organic nutrients, have been investigated in wheat. Two different procedures were used to vary the supply of nutrients to the grains during the phase of cell division. Detached ears were cultured in solutions of sucrose (0-60 g 1-1) and glutamine (0.125-0.75 g N 1-1), or intact plants were exposed to high (560 �mol m-2 s-1) or low (55 �mol m-2 s-1) photon irradiance. Cell number per endosperm, and grain dry weight, were both responsive to the concentration of nutrients in the external medium, and to the level of photon exposure. Average dry weight per cell was relatively independent of the level of nutrition or of photon exposure until cell division had ceased but, in the later stages of grain-filling, dry weight per cell in the cultured ears displayed a dependence upon the concentration of nutrients in the external medium. Amounts of sucrose, other soluble carbohydrates and soluble amino nitrogen were extracted from the grains and, on a per grain basis, the amounts of all fractions varied in response to variation in the level of nutrients supplied to the ears, and to photon exposure. However, concentrations of these nutrients in the developing grains, calculated on a dry weight or water basis, were not associated with the rate of cell division in the grains. While the evidence gathered supports the notion that growth (in cell number, and dry weight) of the developing endosperm is controlled inter alia by the provision of organic nutrients, the nature of the controlling mechanism is obscure. It seems that cellular division is not affected directly by nutritional supply through a mechanism involving the concentration of substrates for energy and protein synthesis within the developing grain.


Zygote ◽  
2001 ◽  
Vol 9 (4) ◽  
pp. 289-292 ◽  
Author(s):  
María Beatriz Espinosa ◽  
Alfredo D. Vitullo

Karyotyping and cell number estimates in preimplantation embryos from heterogametic (XY*) and homogametic (XX) females of the field mouse Akodon azarae were studied to determine whether XX-XY-XY* differences exist in the rate of preimplantation development. At the morula stage, XY embryos from heterogametic mothers had twice the mean number of cells compared with XX embryos. However, this difference in cell numbers was not seen between XX and XY embryos from homogametic mothers. In this case, mean cell numbers were similar despite embryos being XX or XY. Furthermore, the mean cell number for XX and XY morulae from homogametic females was comparable to that for XX embryos from heterogametic females. It is concluded that XY* embryos (which will develop into heterogametic females) show an accelerated rate of preimplantation development.


2010 ◽  
Vol 148 (5) ◽  
pp. 567-578 ◽  
Author(s):  
S. YAN ◽  
W. LI ◽  
Y. YIN ◽  
Z. WANG

SUMMARYStarch is a major component of wheat grain and, to a great extent, determines the grain weight. Starch accumulation in wheat (Triticum aestivum L.) is closely associated with sink strength. Four winter wheat cultivars, Lumai 21 and Jimai 20 (compact-spike cultivars) and Shannong 1391 and Shannong 12 (loose-spike cultivars) were grown to evaluate the amylose and amylopectin accumulation in both superior and inferior grains (higher and lower individual grain weight, respectively) and the relationship between starch accumulation and sink strength. In general, superior grains showed a higher starch accumulation rate, endosperm cell number and activity of enzymes including sucrose synthase (SS), uridine diphosphorate glucose pyrophosphorylase (UGPP), adenosine diphosphorate glucose pyrophosphorylase (AGPP), soluble starch synthase (SSS) and granule-bound starch synthase (GBSS), and subsequently produced higher starch accumulation and grain weight than inferior grains. Greater differences in starch accumulation and grain weight were found between the two classes of grains for compact-spike cultivars than between those for loose-spike cultivars. These results suggest that the grain sink strength, determined by endosperm cell number and the activity of synthesis-related enzymes, is closely associated with starch accumulation in superior and inferior grains on a wheat spike.


2021 ◽  
Vol 1 (2) ◽  
pp. 1-7
Author(s):  
Sara Klisara ◽  
Goran Nermin ◽  
Elma Avdagić-Golub

This paper focuses on the problem of 5G network cell planning. In addition, it presents an example of a rough estimation of the required number of cells or base stations in a certain area for arbitrary number of users who are provided with a certain bandwidth per user within these cells. The cell number estimation is the initial step and the essence of planning and implementation of 5G network in an area. It is helpful for the operators to create and take into the account business plans in order to fully implement the network as a function of number of users which have to be served. Considering that, knowing the rough number of 5G base stations per user is very important for pre-sale activities and eventually necessity for widening of the initial investments. Therefore, the paper presents four scenarios that include different network parameters. Depending on the network parameters, the required number of base stations in a certain area changes. Given scenarios are examples of one 5G network in virtual area per bandwidth per user.


Author(s):  
Eun Ji Jeong ◽  
Donghyuk Choi ◽  
Dong Woo Lee

Conventional cell-counting software uses contour or watershed segmentations and focuses on identifying two-dimensional (2D) cells attached on the bottom of plastic plates. Recently developed software has been useful tools for the quality control of 2D cell-based assays by measuring initial seed cell numbers. These algorithms do not, however, quantitatively test in three-dimensional (3D) cell-based assays using extracellular matrix (ECM), because cells are aggregated and overlapped in the 3D structure of the ECM such as Matrigel, collagen, and alginate. Such overlapped and aggregated cells make it difficult to segment cells and to count the number of cells accurately. It is important, however, to determine the number of cells to standardize experiments and ensure the reproducibility of 3D cell-based assays. In this study, we apply a 3D cell-counting method using U-net deep learning to high-density aggregated cells in ECM to identify initial seed cell numbers. The proposed method showed a 10% counting error in high-density aggregated cells, while the contour and watershed segmentations showed 30% and 40% counting errors, respectively. Thus, the proposed method can reduce the seed cell-counting error in 3D cell-based assays by providing the exact number of cells to researchers, thereby enabling the acquisition of quality control in 3D cell-based assays.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramona Wördemann ◽  
Lars Wiefel ◽  
Volker F. Wendisch ◽  
Alexander Steinbüchel

AbstractCyanophycin (multi-l-arginyl-poly-l-aspartic acid; also known as cyanophycin grana peptide [CGP]) is a biopolymer that could be used in various fields, for example, as a potential precursor for the synthesis of polyaspartic acid or for the production of CGP-derived dipeptides. To extend the applications of this polymer, it is therefore of interest to synthesize CGP with different compositions. A recent re-evaluation of the CGP synthesis in C. glutamicum has shown that C. glutamicum is a potentially interesting microorganism for CGP synthesis with a high content of alternative amino acids. This study shows that the amount of alternative amino acids can be increased by using mutants of C. glutamicum with altered amino acid biosynthesis. With the DM1729 mutant, the lysine content in the polymer could be increased up to 33.5 mol%. Furthermore, an ornithine content of up to 12.6 mol% was achieved with ORN2(Pgdh4). How much water-soluble or insoluble CGP is synthesized is strongly related to the used cyanophycin synthetase. CphADh synthesizes soluble CGP exclusively. However, soluble CGP could also be isolated from cells expressing CphA6308Δ1 or CphA6308Δ1_C595S in addition to insoluble CGP in all examined strains. The point mutation in CphA6308Δ1_C595S partially resulted in a higher lysine content. In addition, the CGP content could be increased to 36% of the cell dry weight under optimizing growth conditions in C. glutamicum ATCC13032. All known alternative major amino acids for CGP synthesis (lysine, ornithine, citrulline, and glutamic acid) could be incorporated into CGP in C. glutamicum.


2020 ◽  
Vol 11 (1) ◽  
pp. 137
Author(s):  
Quoc Dung Phan ◽  
Guillaume Gateau ◽  
Phu Cong Nguyen ◽  
Marc Cousineau ◽  
Huu Phuc To ◽  
...  

This paper proposes a fast, decentralized method for self-aligning the carriers of a multiphase/multilevel converter operating on the basis of phase-shifted pulse width modulation or level-shifted pulse width modulation. In the proposed method, each cell of the converter synchronizes and updates simultaneously its own carrier angle or carrier level based on the information shared with its neighboring cell, such as its angle/level, its index number, and the total number of activated cells of the converter. Different from the conventional decentralized method (with basic and modified updating rules), which requires some conditions in terms of cell number and initial carrier angles to start up and operate properly, the proposed method can be applied to the system with any number of cells and does not require special conditions of initial carrier angles. Further, while the conventional method needs an iteration process to adjust the inter-carrier phase-shifts and can be applied only to a multiphase converter which uses phase-shifted pulse width modulation, the proposed method offers an accurate and fast alignment of phases (for phase-shifted pulse width modulation) or levels (for level-shifted pulse width modulation) and thus can be applied to both multiphase and multilevel converter types. The simulations and the experimental results are presented in detail to show the validity and the effectiveness of the proposed methods. Further, thorough simulations on multiphase converters with different number of cells also show that the proposed method is much faster than the conventional method in both configuration and reconfiguration processes, especially in case the system has a large number of cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yingying Sun ◽  
Suiqi Zhang ◽  
Jiakun Yan

AbstractEight dryland winter wheat cultivars (Triticum aestivum L.), which were widely cultivated from the 1940s to the 2010s in Shaanxi Province, China, were selected and grown in plots, and two water treatments (irrigation and drought) were used to identify the contribution of ears, leaves and stems to grain weight and grain number associated with cultivar replacement. The plant height and stem dry weight of the dryland wheat decreased significantly during the cultivar replacement process, but there was a remarkable increase in the dry matter translocation of stems under irrigation. Shaded-ear and defoliation treatment could decrease the grain number and grain weight, and the grain weight was more influenced. Both the leaf and ear are important photosynthetic sources for dryland wheat, and the contribution of ear assimilates showed a significant increase over time; however, the contribution of leaf assimilates showed a negative correlation with cultivation over time. The accumulation of stem assimilates and ear photosynthesis both increased the grain weight potential. In the future breeding process, cultivars with more assimilates stored in the stem and greater assimilative capacity of ears, especially a greater contribution of ear assimilates, are expected to increase the grain yield.


2003 ◽  
Vol 33 (10) ◽  
pp. 1905-1914 ◽  
Author(s):  
Irina P Panyushkina ◽  
Malcolm K Hughes ◽  
Eugene A Vaganov ◽  
Martin AR Munro

We reconstructed air temperature for two periods in the growth season from cell dimension and cell number variability in cross-dated tree rings of Larix cajanderi Mayr. from northeastern Siberia. Thirteen tree-ring chronologies based on cell size, cell wall thickness, and cell number were developed for AD 1642–1993. No clear evidence was found of an age-related trend in cell dimensions in the sampled materials, but cell numbers were correlated with cambial age. The chronologies contain strong temperature signals associated with the timing of xylem growth. We obtained reliable reconstructions of mean June temperature from the total cell number and July–September temperature from the cell wall thickness of latewood. June temperature and July–September temperature covaried for most of the period from AD 1642 to AD 1978. After that time, June temperature became cooler relative to July–September temperature. This difference caused disproportional changes in earlywood tracheids because of the late start of growth and cool conditions in June followed by warming during the rest of the season. The identification of this unusual recent change has shown that intraseasonal resolution may be achieved by cell dimension and cell number chronologies.


Sign in / Sign up

Export Citation Format

Share Document