Differential expression of Notch component and effector genes during ovarian follicle and corpus luteum development during the oestrous cycle

2015 ◽  
Vol 27 (7) ◽  
pp. 1038 ◽  
Author(s):  
D. Murta ◽  
M. Batista ◽  
E. Silva ◽  
A. Trindade ◽  
L. Mateus ◽  
...  

Ovarian dynamics throughout the female oestrous cycle (EC) are characterised by cyclical follicle and corpus luteum (CL) development. These events are tightly regulated, involving extensive cell-to-cell communication. Notch is an evolutionarily well conserved cell-signalling pathway implicated in cell-fate decisions in several tissues. Here, we evaluated the extra-vascular expression patterns of Notch component and effector genes during follicle and CL development throughout the EC. Five mature CD1 female mice were killed at each EC stage. Blood samples were collected for progesterone measurement, ovaries were processed for immunohistochemistry and expression patterns of Notch components (Notch1, 2 and 3, Jagged1 and Delta-like1 and 4) and effectors (Hes1, Hes2 and Hes5) were characterised. Nuclear detection of Notch effectors indicates that Notch signalling is active in the ovary. Notch components and effectors are differentially expressed during follicle and CL development throughout the EC. The spatial and temporal specific expression patterns are associated with follicle growth, selection and ovulation or atresia and CL development and regression.

2016 ◽  
Vol 28 (11) ◽  
pp. 1663 ◽  
Author(s):  
D. Murta ◽  
M. Batista ◽  
A. Trindade ◽  
E. Silva ◽  
L. Mateus ◽  
...  

The oviduct and uterus undergo extensive cellular remodelling during the oestrous cycle, requiring finely tuned intercellular communication. Notch is an evolutionarily conserved cell signalling pathway implicated in cell fate decisions in several tissues. In the present study we evaluated the quantitative real-time polymerase chain reaction (real-time qPCR) and expression (immunohistochemistry) patterns of Notch components (Notch1–4, Delta-like 1 (Dll1), Delta-like 4 (Dll4), Jagged1–2) and effector (hairy/enhancer of split (Hes) 1–2, Hes5 and Notch-Regulated Ankyrin Repeat-Containing Protein (Nrarp)) genes in the mouse oviduct and uterus throughout the oestrous cycle. Notch genes are differentially transcribed and expressed in the mouse oviduct and uterus throughout the oestrous cycle. The correlated transcription levels of Notch components and effector genes, and the nuclear detection of Notch effector proteins, indicate that Notch signalling is active. The correlation between transcription levels of Notch genes and progesterone concentrations, and the association between expression of Notch proteins and progesterone receptor (PR) activation, indicate direct progesterone regulation of Notch signalling. The expression patterns of Notch proteins are spatially and temporally specific, resulting in unique expression combinations of Notch receptor, ligand and effector genes in the oviduct luminal epithelium, uterus luminal and glandular epithelia and uterine stroma throughout the oestrous cycle. Together, the results of the present study imply a regulatory role for Notch signalling in oviduct and uterine cellular remodelling occurring throughout the oestrous cycle.


2018 ◽  
Author(s):  
M Joaquina Delás ◽  
Benjamin T Jackson ◽  
Tatjana Kovacevic ◽  
Silvia Vangelisti ◽  
Ester Munera Maravilla ◽  
...  

SummaryLong non-coding RNAs (lncRNAs) show patterns of tissue- and cell-type-specific expression that are very similar to those of protein coding genes and consequently have the potential to control stem and progenitor cell fate decisions along a differentiation trajectory. To understand the roles that lncRNAs might play in hematopoiesis, we selected a subset of mouse lncRNAs with potentially relevant expression patterns and refined our candidate list using evidence of conserved expression in human blood lineages. For each candidate, we assessed its possible role in hematopoietic differentiation in vivo using competitive transplantation. Our studies identified two lncRNAs that were required for hematopoiesis. One of these, Spehd, showed defective multi-lineage differentiation, and its silencing yielded common myeloid progenitors deficient in their oxidative phosphorylation pathway. This effort not only suggests that lncRNAs can contribute to differentiation decisions during hematopoiesis but also provides a path toward the identification of functional lncRNAs in other differentiation hierarchies.


Endocrinology ◽  
2019 ◽  
Vol 160 (10) ◽  
pp. 2282-2297 ◽  
Author(s):  
Sandra Haider ◽  
Magdalena Gamperl ◽  
Thomas R Burkard ◽  
Victoria Kunihs ◽  
Ulrich Kaindl ◽  
...  

Abstract The human endometrium is the inner lining of the uterus consisting of stromal and epithelial (secretory and ciliated) cells. It undergoes a hormonally regulated monthly cycle of growth, differentiation, and desquamation. However, how these cyclic changes control the balance between secretory and ciliated cells remains unclear. Here, we established endometrial organoids to investigate the estrogen (E2)-driven control of cell fate decisions in human endometrial epithelium. We demonstrate that they preserve the structure, expression patterns, secretory properties, and E2 responsiveness of their tissue of origin. Next, we show that the induction of ciliated cells is orchestrated by the coordinated action of E2 and NOTCH signaling. Although E2 is the primary driver, inhibition of NOTCH signaling provides a permissive environment. However, inhibition of NOTCH alone is not sufficient to trigger ciliogenesis. Overall, we provide insights into endometrial biology and propose endometrial organoids as a robust and powerful model for studying ciliogenesis in vitro.


2019 ◽  
Vol 10 (1) ◽  
pp. 235-246 ◽  
Author(s):  
Johanna Kurko ◽  
Paul V. Debes ◽  
Andrew H. House ◽  
Tutku Aykanat ◽  
Jaakko Erkinaro ◽  
...  

Despite recent taxonomic diversification in studies linking genotype with phenotype, follow-up studies aimed at understanding the molecular processes of such genotype-phenotype associations remain rare. The age at which an individual reaches sexual maturity is an important fitness trait in many wild species. However, the molecular mechanisms regulating maturation timing processes remain obscure. A recent genome-wide association study in Atlantic salmon (Salmo salar) identified large-effect age-at-maturity-associated chromosomal regions including genes vgll3, akap11 and six6, which have roles in adipogenesis, spermatogenesis and the hypothalamic-pituitary-gonadal (HPG) axis, respectively. Here, we determine expression patterns of these genes during salmon development and their potential molecular partners and pathways. Using Nanostring transcription profiling technology, we show development- and tissue-specific mRNA expression patterns for vgll3, akap11 and six6. Correlated expression levels of vgll3 and akap11, which have adjacent chromosomal location, suggests they may have shared regulation. Further, vgll3 correlating with arhgap6 and yap1, and akap11 with lats1 and yap1 suggests that Vgll3 and Akap11 take part in actin cytoskeleton regulation. Tissue-specific expression results indicate that vgll3 and akap11 paralogs have sex-dependent expression patterns in gonads. Moreover, six6 correlating with slc38a6 and rtn1, and Hippo signaling genes suggests that Six6 could have a broader role in the HPG neuroendrocrine and cell fate commitment regulation, respectively. We conclude that Vgll3, Akap11 and Six6 may influence Atlantic salmon maturation timing via affecting adipogenesis and gametogenesis by regulating cell fate commitment and the HPG axis. These results may help to unravel general molecular mechanisms behind maturation.


2008 ◽  
Vol 28 (21) ◽  
pp. 6668-6680 ◽  
Author(s):  
Albertus T. J. Wierenga ◽  
Edo Vellenga ◽  
Jan Jacob Schuringa

ABSTRACT The level of transcription factor activity critically regulates cell fate decisions, such as hematopoietic stem cell (HSC) self-renewal and differentiation. We introduced STAT5A transcriptional activity into human HSCs/progenitor cells in a dose-dependent manner by overexpression of a tamoxifen-inducible STAT5A(1*6)-estrogen receptor fusion protein. Induction of STAT5A activity in CD34+ cells resulted in impaired myelopoiesis and induction of erythropoiesis, which was most pronounced at the highest STAT5A transactivation levels. In contrast, intermediate STAT5A activity levels resulted in the most pronounced proliferative advantage of CD34+ cells. This coincided with increased cobblestone area-forming cell and long-term-culture-initiating cell frequencies, which were predominantly elevated at intermediate STAT5A activity levels but not at high STAT5A levels. Self-renewal of progenitors was addressed by serial replating of CFU, and only progenitors containing intermediate STAT5A activity levels contained self-renewal capacity. By extensive gene expression profiling we could identify gene expression patterns of STAT5 target genes that predominantly associated with a self-renewal and long-term expansion phenotype versus those that identified a predominant differentiation phenotype.


Open Biology ◽  
2016 ◽  
Vol 6 (1) ◽  
pp. 150197 ◽  
Author(s):  
Paula Irles ◽  
Nashwa Elshaer ◽  
Maria-Dolors Piulachs

The Notch pathway is an essential regulator of cell proliferation and differentiation during development. Its involvement in insect oogenesis has been examined in insect species with meroistic ovaries, and it is known to play a fundamental role in cell fate decisions and the induction of the mitosis-to-endocycle switch in follicular cells (FCs). This work reports the functions of the main components of the Notch pathway (Notch and its ligands Delta and Serrate) during oogenesis in Blattella germanica , a phylogenetically basal species with panoistic ovary. As is revealed by RNAi-based analyses, Notch and Delta were found to contribute towards maintaining the FCs in an immature, non-apoptotic state. This ancestral function of Notch appears in opposition to the induction of transition from mitosis to endocycle that Notch exerts in Drosophila melanogaster, a change in the Notch function that might be in agreement with the evolution of the insect ovary types. Notch was also shown to play an active role in inducing ovarian follicle elongation via the regulation of the cytoskeleton. In addition, Delta and Notch interactions were seen to determine the differentiation of the posterior population of FCs. Serrate levels were found to be Notch-dependent and are involved in the control of the FC programme, although they would appear to play no crucial role in panoistic ovary oogenesis.


2008 ◽  
Vol 182 (6) ◽  
pp. 1113-1125 ◽  
Author(s):  
An-Chi Tien ◽  
Akhila Rajan ◽  
Karen L. Schulze ◽  
Hyung Don Ryoo ◽  
Melih Acar ◽  
...  

Notch-mediated cell–cell communication regulates numerous developmental processes and cell fate decisions. Through a mosaic genetic screen in Drosophila melanogaster, we identified a role in Notch signaling for a conserved thiol oxidase, endoplasmic reticulum (ER) oxidoreductin 1–like (Ero1L). Although Ero1L is reported to play a widespread role in protein folding in yeast, in flies Ero1L mutant clones show specific defects in lateral inhibition and inductive signaling, two characteristic processes regulated by Notch signaling. Ero1L mutant cells accumulate high levels of Notch protein in the ER and induce the unfolded protein response, suggesting that Notch is misfolded and fails to be exported from the ER. Biochemical assays demonstrate that Ero1L is required for formation of disulfide bonds of three Lin12-Notch repeats (LNRs) present in the extracellular domain of Notch. These LNRs are unique to the Notch family of proteins. Therefore, we have uncovered an unexpected requirement for Ero1L in the maturation of the Notch receptor.


2021 ◽  
Author(s):  
Rebecca J. Noort ◽  
Grace A. Christopher ◽  
Jessica L. Esseltine

AbstractEvery single cell in the body communicates with nearby cells to locally organize activities with their neighbors and dysfunctional cell-cell communication can be detrimental during cell lineage commitment, tissue patterning and organ development. Pannexin channels (PANX1, PANX2, PANX3) facilitate purinergic paracrine signaling through the passage of messenger molecules out of cells. PANX1 is widely expressed throughout the body and has recently been identified in human oocytes as well as 2 and 4-cell stage human embryos. Given its abundance across multiple adult tissues and its expression at the earliest stages of human development, we sought to understand whether PANX1 impacts human induced pluripotent stem cells (iPSCs) or plays a role in cell fate decisions. Western blot, immunofluorescence and flow cytometry reveal that PANX1 is expressed in iPSCs as well as all three germ lineages derived from these cells: ectoderm, endoderm, and mesoderm. PANX1 demonstrates differential glycosylation patterns and subcellular localization across the germ lineages. Using CRISPR-Cas9 gene ablation, we find that loss of PANX1 has no obvious impact on iPSC morphology, survival, or pluripotency gene expression. However, PANX1 knockout iPSCs exhibit apparent lineage specification bias during 2-dimensional and 3-dimensional spontaneous differentiation into the three germ lineages. Indeed, loss of PANX1 significantly decreases the proportion of ectodermal cells within spontaneously differentiated cultures, while endodermal and mesodermal representation is increased in PANX1 knockout cells. Importantly, PANX1 knockout iPSCs are fully capable of differentiating toward each specific lineage when exposed to the appropriate external signaling pressures, suggesting that although PANX1 influences germ lineage specification, it is not essential to this process.Graphical abstract


Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3699-3708 ◽  
Author(s):  
T. Jagla ◽  
F. Bellard ◽  
Y. Lutz ◽  
G. Dretzen ◽  
M. Bellard ◽  
...  

In the mesoderm of Drosophila embryos, a defined number of cells segregate as progenitors of individual body wall muscles. Progenitors and their progeny founder cells display lineage-specific expression of transcription factors but the mechanisms that regulate their unique identities are poorly understood. Here we show that the homeobox genes ladybird early and ladybird late are expressed in only one muscle progenitor and its progeny: the segmental border muscle founder cell and two precursors of adult muscles. The segregation of the ladybird-positive progenitor requires coordinate action of neurogenic genes and an interplay of inductive Hedgehog and Wingless signals from the overlying ectoderm. Unlike so far described progenitors but similar to the neuroblasts, the ladybird-positive progenitor undergoes morphologically asymmetric division. We demonstrate that the ectopic ladybird expression is sufficient to change the identity of a subset of progenitor/founder cells and to generate an altered pattern of muscle precursors. When ectopically expressed, ladybird transforms the identity of neighbouring, Kruppel-positive progenitors leading to the formation of giant segmental border muscles and supernumerary precursors of lateral adult muscles. In embryos lacking ladybird gene function, specification of two ladybird-expressing myoblast lineages is affected. The segmental border muscles do not form or have abnormal shapes and insertion sites while the number of lateral precursors of adult muscles is dramatically reduced. Altogether our results provide new insights into the genetic control of diversification of muscle precursors and indicate a further similarity between the myogenic and neurogenic pathways.


Sign in / Sign up

Export Citation Format

Share Document