In vitro production of horse embryos predisposes to micronucleus formation, whereas time to blastocyst formation affects likelihood of pregnancy

2019 ◽  
Vol 31 (12) ◽  
pp. 1830 ◽  
Author(s):  
Kaatje D. Ducheyne ◽  
Marilena Rizzo ◽  
Juan Cuervo-Arango ◽  
Anthony Claes ◽  
Peter F. Daels ◽  
...  

Invitro embryo production is an increasingly popular means of breeding horses. However, success is limited by a high incidence of early embryo loss. Although there are various possible causes of pregnancy failure, chromosomal abnormalities, including aneuploidy, are important potential contributors. This study evaluated the frequency of micronucleus formation as a proxy for aneuploidy in invitro-produced (IVP) and invivo-derived horse blastocysts. Associations between IVP embryo morphology, frequency of nuclear abnormalities and the likelihood of pregnancy were investigated. IVP blastocysts exhibited a higher frequency of cells with micronuclei than invivo-derived embryos (10% vs 1% respectively; P=0.05). This indication of chromosomal instability may explain the higher incidence of pregnancy failure after transfer of IVP embryos. However, the frequency of micronuclei was not correlated with brightfield microscopic morphological characteristics. Nevertheless, IVP embryos reaching the blastocyst stage after Day 9 of invitro culture were less likely to yield a pregnancy than embryos that developed to blastocysts before Day 9 (27% vs 69%), and embryos that had expanded before transfer were more likely to undergo embryonic death than those that had not expanded (44% vs 10%). These findings indicate that current embryo culture conditions are suboptimal and that the speed of embryo development is correlated with pregnancy survival.

2015 ◽  
Vol 27 (1) ◽  
pp. 136
Author(s):  
M. Hoelker ◽  
A. Kassens ◽  
E. Held ◽  
C. Wrenzycki ◽  
U. Besenfelder ◽  
...  

The in vitro production (IVP) of bovine embryos is a well-established technique that has been available for nearly 20 years. However, there remain major differences between IVP-derived blastocysts and their in vivo-derived counterparts. Many studies have pointed out that most of these differences are due to the in vitro developmental environment. To circumvent these negative effects due to in vitro culture conditions, a new method – intrafollicular oocyte transfer (IFOT) – was established in the present study. Using modified ovum pick-up (OPU) equipment, in vitro-matured oocytes derived from slaughterhouse ovaries were injected into the dominant preovulatory follicle of synchronised heifers (follicular recipients) enabling subsequent ovulation, in vivo fertilization, and in vivo development. A total of 810 in vitro-matured oocytes were transferred into 14 heifers. Subsequently, 222 embryos (27.3%) were recovered after uterine flushing at Day 7. Based on the number of cleaved embryonic stages, 64.2% developed to the blastocyst stage, which did not differ from the IVP-derived embryos (58.2%). Interestingly, lipid content of IFOT-derived blastocysts did not differ from the fully in vivo-produced embryos, whereas IVP-derived blastocysts showed significantly higher lipid droplet accumulation compared with fully in vivo-derived and IFOT-derived blastocysts (P < 0.05). Accordingly, IFOT blastocysts showed significantly higher survival rates after cryopreservation than complete IVP-derived embryos (77% v. 10%), which might be attributed to a lower degree of lipid accumulation. In agreement, transfer of frozen-thawed IFOT blastocysts to synchronized recipients (uterine recipients) resulted in much higher pregnancy rates compared with transfer of IVP-derived blastocysts (42.1 v. 13.8%) but did not differ from frozen-thawed ex vivo blastocysts (52.4%). Of these presumed IFOT pregnancies, 7 went to term, and microsatellite analysis confirmed that 5 calves were indeed derived from IFOT, whereas 2 were caused by fertilization of the follicular recipient's own oocyte after AI. Taken together, IFOT-derived blastocysts closely resemble in vivo-derived blastocysts, confirming earlier suggestions that the ability to develop to the blastocyst stage is already determined in the matured oocyte, whereas the quality in terms of lipid content and survival rate after cryopreservation is affected by the environment thereafter. However, to the best of our knowledge, this is the first study reporting healthy calves after intrafollicular transfer of in vitro-matured oocytes.


2007 ◽  
Vol 19 (1) ◽  
pp. 141
Author(s):  
I. S. Hwang ◽  
H. J. Moon ◽  
J. H. Shim ◽  
M. R. Park ◽  
D. H. Kim ◽  
...  

In vitro production of the pig embryo is very important as an initial step to improve its application in biotechnology. The in vitro production system for pig embryos, however, has been plagued by the high incidence of polyspermy and poor embryo quality. The present study was conducted to examine the relationship between apoptosis and osmolarity of culture medium in pre-implantation development of porcine NT and IVF embryos. Oocytes were aspirated from ovaries collected from a local abattoir, and then matured in TCM-199 for 40–44 h. Fresh semen was diluted and equilibrated at 16�C. The final concentration of motile spermatozoa was adjusted to 5 � 105 cells/mL in fertilization medium. Fetal fibroblasts were prepared from a 35-day-old porcine fetus for use as donor cells. The NT and IVF embryos were cultured in PZM-3 supplemented with 0.05 M sucrose or a final concentration of 138 mM NaCl (280–320 mOsmol) for the first 2 days, and then cultured in PZM-3 (250–270 mOsmol) for the remaining days. For the control, NT and IVF embryos were cultured in PZM-3 for whole culture period. After 6 days of culture, the developmental ability of embryos, total cell numbers, ratio of ICM/TE, and apoptosis of cells in blastocysts were examined. The developmental rate to the blastocyst stage of NT embryos was significantly higher (P &lt; 0.05) in the sucrose and NaCl groups than in the control [14.7% (21/153) and 21.7% (34/154) vs. 11.5% (18/152), respectively]. Also, the developmental rate to the blastocyst stage after IVF was slightly higher in embryos cultured in the medium supplemented with NaCl than in the control group [21.8% (49/235) and 26.4% (61/237) vs. 18.9% (44/247)]. For apoptosis, both NT and IVF blastocysts produced in the sucrose and NaCl groups showed slightly lower frequency of apoptosis compared to that of the control (2.2% and 2.8% vs. 3.1% for NT; 0.9% and 0.7% vs. 1.1% for IVF). These studies suggest that the high osmolarity in the early embryo culture stage could enhance the in vitro development of both porcine NT and IVF embryos to the blastocyst stage and could reduce the apoptosis of cells.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Á Martíne. Moro ◽  
I Lamas-Toranzo ◽  
L González-Brusi ◽  
A Pérez-Gómez ◽  
P Bermejo-Álvarez

Abstract Study question Does cumulus cell mtDNA content correlate with oocyte developmental potential in the bovine model? Summary answer The relative amount of mtDNA content did not vary significantly in oocytes showing different developmental outcomes following IVF What is known already Cumulus cells are closely connected to the oocyte through transzonal projections, serving essential metabolic functions during folliculogenesis. These oocyte-supporting cells are removed and discarded prior to ICSI, thereby constituting an interesting biological material on which to perform molecular analysis aimed to predict oocyte developmental competence. Previous studies have positively associated oocytés mtDNA content with developmental potential in both animal models and women. However, it remains debatable whether mtDNA content in cumulus cells could be used as a proxy to infer oocyte developmental potential. Study design, size, duration Bovine cumulus cells were allocated into three groups according to the developmental potential of the oocyte: 1) oocytes developing to blastocysts following IVF (Bl+Cl+), 2) oocytes cleaving following IVF but arresting their development prior to the blastocyst stage (Bl-Cl+), and 3) oocytes not cleaving following IVF (Bl-Cl-). Relative mtDNA content was analysed in 40 samples/group, each composed by the cumulus cells from one cumulus-oocyte complex (COC). Participants/materials, setting, methods Bovine cumulus-oocyte complexes were obtained from slaughtered cattle and individually matured in vitro (IVM). Following IVM, cumulus cells were removed by hyaluronidase treatment, pelleted, snap frozen in liquid nitrogen and stored at –80 ºC until analysis. Cumulus-free oocytes were fertilized and cultured in vitro individually and development was recorded for each oocyte. Relative mtDNA abundance was determined by qPCR, amplifying a mtDNA sequence (COX1) and a chromosomal sequence (PPIA). Statistical differences were tested by ANOVA. Main results and the role of chance Relative mtDNA abundance did not differ significantly (ANOVA p &gt; 0.05) between the three groups exhibiting different developmental potential (1±0.06 vs. 1.19±0.05 vs. 1.11±0.05, for Bl+Cl+ vs. Bl-Cl+ vs. Bl-Cl-, mean±s.e.m.). Limitations, reasons for caution Experiments were conducted in the bovine model. Although bovine folliculogenesis, monoovulatory ovulation and early embryo development exhibit considerable similarities with that of humans, caution should be taken when extrapolating these data to humans. Wider implications of the findings: The use of molecular markers for oocyte developmental potential in cumulus cells could be used to enhance success rates following single-embryo transfer. Unfortunately, mtDNA in cumulus cells was not found to be a good proxy for oocyte quality. Trial registration number Not applicable


2000 ◽  
Vol 8 (3) ◽  
pp. 241-287 ◽  
Author(s):  
GM Jones

The transfer of a blastocyst established the first human clinical pregnancy following in vitro fertilization (IVF). Nine years later Cohen et al. reported pregnancies resulting from the transfer of cryopreserved human blastocysts. However, it was another six years before the first report of births resulting from the transfer of human blastocysts produced in vitro appeared in the medical literature. In the intervening period clinics have opted to transfer embryos at the early cleavage stage to the uterus, despite the fact that in vivo the embryo does not enter the uterus until two to three days later at the morula to blastocyst stage of development. The viability and potential for implantation of blastocysts is high, as indicated by the finding that more than 60% of in-vivo-derived blastocysts, recovered by uterine lavage following artificial insemination of fertile donors, implant and develop into viable fetuses when transferred to recipients. This is in stark contrast to the 10–20% of in-vitro-produced embryos transferred at the early cleavage stage of development that result in a live-birth. This reduction in viability following transfer of in-vitro-derived early cleavage stage embryos may have several possible explanations: (1) a failure of implantation due to poor synchronization between the embryo and the uterine endometrium; (2) a hostile environment in the uterus for early cleavage stage embryos; (3) sub-optimal in vitro culture conditions which result in a reduction in embryo viability; (4) the assumption that all oocytes retrieved in an IVF cycle have an equal ability to develop into viable embryos; and (5) the failure to identify the most viable embryo in a cohort. Certainly, improving culture conditions and laboratory techniques for developing high quality blastocysts routinely in vitro will not only address many of the above questions but will also improve the quality and viability of earlier stages of embryo development.


2007 ◽  
Vol 19 (1) ◽  
pp. 210
Author(s):  
D. M. Kohl ◽  
R. L. Monson ◽  
L. E. Enwall ◽  
J. J. Rutledge

Assessment of morphological stage grade is a subjective procedure. Stage grade is of vital importance to, among other things, recipient synchrony for the purpose of establishing successful pregnancies. Asynchronous embryo transfer has led to decreases in pregnancy rates (Farin et al. 1995 Biol. Reprod. 52, 676–682) and has been implicated in contributing to large offspring syndrome (Young et al. 1996 Theriogenology 45, 231). Differences in embryo kinetics based on culture conditions have been well documented (Mello et al. 2005 Reprod. Fert. Dev. 17, 221 abst). Whether such differences are the result of species, breed, metabolic stress, sire effects, or separation from an in vivo environment has yet to be determined. The correlation between oxygen respiration rates and embryo morphology as well as embryo diameter in bovine embryos produced in vitro has shown promise in the development of a more objective predictor of embryo quality and perhaps pregnancy initiation (Lopes et al. 2005 Reprod. Fert. Dev. 17, 151 abst). As well, recent examination of gene expression patterns of in vitro-derived bovine embryos seems to indicate that longer periods of in vitro culture are associated with lower rates of embryo survival (Lonergan et al. 2006 Theriogenology 65, 137–152). We hypothesize that differences do exist in the number, rate, and morphological appearance of blastocysts and that these parameters are in large part based on culture conditions in vitro. The objective of this experiment was to determine the timing and distribution of blastocyst formation of in vitro-produced bovine embryos cultured in SOF8, CR18AA, and KSOM8, under a standard incubation environment. Bovine ovaries from a local abattoir were aspirated and matured for 18-22. Oocytes were fertilized with frozen-thawed Percoll-separated semen from a Holstein bull. Presumptive zygotes were vortexed to remove cumulus cells and placed into 3 different culture media in a highly humidified atmosphere containing 20% oxygen, 5% carbon dioxide, and compressed air at 38.5�C. Embryos were evaluated specifically at 168 h post-insemination (Day 7) and assigned a morphological stage grade (IETS) to determine fixed time point differences. A total of 6 complete replicates were performed. Only embryos exhibiting the presence of a blastocoel at this time were documented (early blast, mid-blast, expanded blast). At 168 h post-insemination, there were no significant differences in the total number of embryos reaching early or mid-blast stage in any of the media. However, chi-square analysis revealed an increase in the number of expanded blastocysts in SOF (n = 813) and CR1 (n = 838) treatments compared to KSOM (n = 824; P &lt; 0.0001). Expanded blastocysts in SOF were also greater in number than in CR1 (P &lt; 0.05). Embryo selection based on development to the expanded blastocyst stage on Day 7 may prove useful in increasing pregnancy rates, and may validate qualitative correlations based on oxygen consumption and gene expression profiles for embryos produced in vitro.


2008 ◽  
Vol 20 (1) ◽  
pp. 203
Author(s):  
N. V. Linh ◽  
D. N. Q. Thanh ◽  
M. Ozawa ◽  
B. X. Nguyen ◽  
K. Kikuchi ◽  
...  

Cysteine is considered to promote male pronuclear (MPN) formation in porcine through oocyte glutathione (GSH) synthesis (Yoshida et al. 1993 Biol. Reprod. 49, 89–94). The GSH has an important role in providing cells with a redox state and in acting to protect cells from toxic effects of oxidative damage (Meister et al. 1976 AM Rev. Biochem. 45, 559–604). However, such previous investigations were carried out under high O2 tension (20% O2) incubation conditions. Here we simply study IVM-IVF-IVC competence of porcine oocytes matured in IVM media supplemented with cysteine of different concentrations under low oxygen tension (5% O2). Cumulus–oocyte complexes (COCs) from prepubertal gilts were collected, matured, and fertilized in vitro according to Kikuchi et al. (2000 Biol. Reprod. 66, 1033–1041). COCs were cultured in IVM medium supplemented with 0 (Group 1; control), 0.05 (Group 2), 0.1 (Group 3), 0.2 (Group 4), and 0.6 mm (Group 5) cysteine under low oxygen tension. Nuclear maturation of oocytes, fertilization status, and number of cells in resultant embryos were assessed with orcein staining; also, the GSH content of IVM oocytes was measured by the method described by Ozawa et al. (2002 Reproduction 124, 683–689). Maturation rates of Groups 1–5 were 68.2 � 3.2, 70.6 � 7.7, 69.7 � 15.9, 75.9 � 7.7, and 68.8 � 8.0%, respectively, indicating no difference in maturation competence among the groups (P > 0.05 by ANOVA). The rates of sperm penetration, MPN formation (95.9 � 2.4, 100 � 0, 92.8 � 4.7, 94.0 � 4.1, and 92.4 � 2.7%, respectively), monospermy, and even blastocyst rates after 6 days of IVC were not different among the groups (P > 0.05 by ANOVA). Moreover, the cell numbers of blastomeres in blastocysts (38.68 � 3.5, 40.1 � 3.1, 37.5 � 3.0, 36.2 � 3.3, and 43.8 � 4.0, respectively) were uniformly the same among the groups (P > 0.05 by ANOVA). However, GSH content of IVM oocytes increased significantly (P < 0.05 by ANOVA) as the concentration of cysteine increased (12.2 � 0.6, 14 � 0.8, 15.1 � 0.5, 16.4 � 0.4, and 16.4 � 0.5 pmol/oocyte, respectively). The GSH level of oocytes in Group 1 (control) seems to be higher than that reported by Aberydeera et al. (1998 Biol. Reprod. 58, 213–218), who matured porcine oocytes under high O2 tension. This may reflect the effect of low O2 tension and explain the same developmental rate to the blastocyst stage as that of oocytes matured in the media supplemented with cysteine in this study. In conclusion, an addition of 0.05–0.6 mm cysteine during IVM, under 5% O2 tension, of porcine oocytes significantly increased intracellular GSH synthesis according to its concentration. However, it had no promoting effects on nuclear maturation, fertilization, male pronucleus formation, and subsequent embryonic development to the blastocyst stage. Thus, O2 tension during IVM of oocytes is suggested to be important for the in vitro production of porcine blastocysts.


2008 ◽  
Vol 20 (1) ◽  
pp. 177
Author(s):  
P. Bermejo-Álvarez ◽  
A. Gutiérrez-Adán ◽  
P. Lonergan ◽  
D. Rizos

The faster-developing blastocysts in IVC systems are generally considered more viable and better able to survive following cryopreservation or embryo transfer than those that develop more slowly. However, evidence from several species indicates that embryos that reach the blastocyst stage earliest are more likely to be males than females. The aim of this study was to determine whether the duration of maturation could affect early embryo development and, furthermore, the sex ratio of early- or late-cleaved embryos and blastocysts. Cumulus–oocyte complexes were matured in vitro for 16 h (n = 2198) or 24 h (n = 2204). Following IVF, presumptive zygotes from each group were examined every 4 h between 24 and 48 h postinsemination (hpi) for cleavage, and all embryos were cultured to Day 8 in synthetic oviduct fluid to assess blastocyst development. Two-cell embryos at each time point and blastocysts on Days 6, 7, and 8 from both groups were snap-frozen individually for sexing. Sexing was performed with a single PCR using a specific primer BRY. There was a significantly lower number of cleaved embryos from the 16-h compared with the 24-h maturation group at 28 (10.0 � 1.51 v. 28.8 � 3.57%), 32 (35.3 � 1.48 v. 57.6 � 3.33%), 36 (54.8 � 1.76 v. 67.4 � 2.81%), 40 (63.3 � 1.82 v. 72.0 � 2.54%), and 48 (70.6 � 1.78 v. 77.1 � 2.18%) hpi, respectively (mean � SEM; P d 0.05). However, the blastocyst yields on Day 6 (17.1 � 3.11 v. 16.4 � 2.11%), 7 (30.6 � 4.10 v. 34.6 � 3.51%), or 8 (34.1 � 3.90 v. 39.4 � 4.26%) were similar for both groups (mean � SEM; 16 v. 24 h, respectively). Significantly more 2-cell early cleaved embryos (up to 32 hpi) were male compared with the expected 1:1 ratio from both groups (16 h: 1.24:0.76 v. 24 h: 1.17:0.83, P ≤ 0.05); however, the overall sex ratio among 2-cell embryos was significantly different from the expected 1:1 in favor of males only for the 16-h group (1.18:0.82, P ≤ 0.05). The sex ratio of blastocysts on Day 6, 7, or 8 from both groups was not different from the expected 1:1. However, the total number of male blastocysts obtained after 8 days of culture from the 24-h group was significantly different from the expected 1:1 (1.19:0.81, P ≤ 0.05) and approached significance in the 16-h group. These results show that the maturational stage of the oocyte at the time of fertilization has an effect on the kinetics of early cleavage divisions but not on blastocyst yield. Furthermore, irrespective of the duration of maturation, the sex ratio of early-cleaving 2-cell embryos was weighted in favor of males, and this observation was maintained at the blastocyst stage.


2014 ◽  
Vol 26 (1) ◽  
pp. 157
Author(s):  
S. Demyda-Peyrás ◽  
M. Hidalgo ◽  
J. Dorado ◽  
M. Moreno-Millan

Chromosomal numerical abnormalities (CNA) were described as a major cause of developmental failures in in vitro-produced (IVP) embryos. It has been described that CNA are influenced by the post-fertilization culture environment of the embryo. Furthermore, it was demonstrated that the use of different culture media affects the CNA rates. The addition of granulosa cells during early embryo development is a well-known procedure to simplify the culture of bovine IVP and cloned embryos. This technique avoids the use of culture environments saturated with N2 (tri-gas chambers). The aim of this study was to determine the effect of the addition of granulosa cells in the chromosomal abnormalities of IVP cattle embryos. Cumulus–oocyte complexes (COC) were matured in TCM-199 medium, supplemented with glutamine, sodium pyruvate, FSH, LH, oestradiol, and gentamicin during 20 h at 38.5°C in a 5% CO2 humid atmosphere. Subsequently, matured oocytes were fertilized in IVF-TALP medium using 1 × 106 spermatozoa mL–1, selected through a Percoll gradient centrifugation. After fertilization, zygotes were divided in 2 groups and cultured in TCM-199 medium for 48 h, with (TCM-GC) or without (TCM) the addition of 1 × 106 granulosa cells. These cells were obtained by centrifuging and washing the follicular fluid remaining from searching dishes and adjusted to the working concentration. After culture, a total of 106 early embryos (72 hpi) were cytogenetically evaluated following our standard laboratory techniques. Embryos showing normal development were individually fixed onto a slide, disaggregated into blastomeres with acetic acid, and stained with Giemsa solution. Chromosomal numerical abnormalities were evaluated by direct observation at 1250× magnification in a brightfield microscope. Percentage of normal diploid embryos (D) and abnormal haploid (H), polyploid (P), or aneuploid (A) embryos were determined. Results were statistically compared between treatments using a Z test for proportions. Results were: D = 81.4%, H = 7.2%, P = 7.2%. and A = 3.6% in TCM and D = 84.3%, H = 3.9%, P = 9.8%, and A = 1.9% in TCM-GC. No significant differences (P > 0.05) were found between culture media in the chromosomal abnormality rates. According to our results, the use of somatic cells in co-culture during embryo development did not influence the appearance of abnormal complements in the produced embryos. This would allow the use of GC as a potential complement to simplify the techniques used in the culture of bovine embryos until Day 3.


2008 ◽  
Vol 20 (1) ◽  
pp. 142
Author(s):  
J. Block ◽  
L. Bonilla ◽  
P. J. Hansen

Objectives were to identify modifications in culture conditions that improve blastocyst yield and cryosurvival. The objective of Experiment 1 was to determine effects of sequential culture and fructose on blastocyst yield. Embryos were cultured in modified SOF with 4 mg mL–1 bovine serum albumin (BSA) and 1.0 mm alanyl-glutamine in 5% (v/v) oxygen with or without 0.5 mm fructose in either a static or sequential culture system. For the sequential system, embryos >4 cells were selected and placed in fresh drops of medium at day 3 after insemination. Culture system and fructose did not affect cleavage rate or the proportion of embryos >4 cells on day 3. The proportion of >4 cell embryos that developed to the blastocyst stage was higher (P < 0.04) for static culture than for sequential culture (41.6 � 1.2 v. 30.6 � 1.2%) and there was a trend (P = 0.1) for the proportion of oocytes that developed to blastocyst at day 7 to be greater for static culture (26.8 � 1.2 v. 20.9 � 1.2%). In both culture systems, fructose increased (P < 0.03) blastocyst yield from embryos >4 cells (32.5 � 1.2 v. 39.7 � 1.2%) and tended (P < 0.06) to improve blastoocyst yield from oocytes (21.8 � 1.1 v. 25.3 � 1.1%). The objective of Exp. 2 was to evaluate whether blastocyst yield and survival after cryopreservation would be enhanced by BSA and hyaluronan. Embryos produced in vitro were cultured in 5% oxygen using a static system of modified SOF with or without 4 mg mL–1 BSA and with 0, 0.1, 0.5, or 1 mg mL–1 hyaluronan. Blastocyst and expanded blastocyst stage embryos on day 7 were vitrified (Campos-Chillon LF et al. 2006 Theriogenology 65, 1200–1214). Vitrified embryos were thawed and then cultured for 72 h in modified SOF containing 10% (v/v) fetal bovine serum and 50 µm dithiothreitol. Re-expansion rate was recorded at 24 and 48 h, and the proportion of embryos that hatched by 72 h of culture was recorded. There was no effect of BSA or hyaluronan on cleavage rate. Blastocyst yield from oocytes was increased (P < 0.0005) by BSA (15.3 � 1.1 v. 20.9 � 1.1%). Addition of hyaluronan at 1 mg mL–1 improved (P < 0.04) blastocyst yield (16.2 � 1.7 v. 21.2 � 1.7%), but there was no effect at lower concentrations. There were no interactions between BSA and hyaluronan. Re-expansion rate at 24 and 48 h after thawing was reduced (P < 0.007) by BSA (24 h: 39.1 � 3.6 v. 17.0 � 3.6%; 48 h: 45.6 � 3.8 v. 18.7 � 3.7%), and BSA tended (P < 0.06) to reduce hatching rate at 72 h (22.3 � 3.0 v. 9.8 � 3.0%). Treatment of embryos with hyaluronan did not affect re-expansion rate at 24 h but tended (P < 0.08) to increase re-expansion at 48 h. Moreover, hyaluronan increased (P < 0.05) hatching rate at 72 h after thawing (0 mg mL–1 – 9.8 � 4.2; 0.1 mg mL–1 – 16.9 � 4.5; 0.5 mg mL–1 – 23.4 � 4.1; 1.0 mg mL–1 – 14.2 � 4.1%). In conclusion, blastocyst yield was improved by addition of fructose, BSA, and hyaluronan to culture medium and by use of a static culture system. Hyaluronan also enhanced cryosurvival, but BSA was detrimental to blastocyst survival after vitrification. Support: USDA NRI 2006-55203-17390, BARD US-3551-04.


2019 ◽  
Vol 31 (1) ◽  
pp. 158
Author(s):  
M. Sponchiado ◽  
W. F. A. Marei ◽  
P. E. J. Bols ◽  
M. Binelli ◽  
J. L. M. R. Leroy

We optimized a bovine endometrial epithelial cell (BEEC) line as a valuable research model for the study of very early embryo-maternal interactions in vitro. In this study, we aimed to (1) characterise the BEEC monolayers along the primary culture and first passages with respect to the expression of epithelial and mesenchymal cell markers and abundance of functional key transcripts; (2) to test whether direct or indirect contact with endometrial cells alter the quality of the embryos in vitro; and (3) to test the specificity of the effect. In Exp. 1, after isolation from slaughterhouse uteri at the early luteal phase, BEEC were cultured in DMEM/F12 phenol red-free medium supplemented with 10% fetal bovine serum (FBS) from primary culture until subculture 3. Fixed samples were immunostained for cytokeratin and vimentin. Transcript abundances for cellular lineage markers (KRT18 and VIM), oestrogen receptor (ESR1), interferon α/beta receptor 1 (IFNAR1), and prostaglandin G/H synthase 1 (PTGS1) and 2 (PTGS2) were evaluated by real-time quantitative PCR. Statistical analyses were carried out by ANOVA and Tukey test. Immunofluorescence data revealed that the BEEC line co-expresses cytokeratin together with a mesenchymal marker (Vimentin). This indicates that these epithelial cells underwent an epithelial-mesenchymal transition in vitro. Gene expression data showed a 6-fold increased (P&lt;0.001) abundance of VIM mRNA from the primary culture to the subculture 1, which remained constant until subculture 3; however, KRT18, ESR1, IFNAR1, PTGS1, and PTGS2 were similar between the passages, suggesting that the cells conserved their functional characteristics. In Exp. 2, groups of 15 morulas (Day 5.5) were cultured in SOF medium supplemented with 5% FBS in the absence (control) or in the presence (co-culture) of BEEC at passage 2, for 48h. Embryos were placed on direct or indirect contact with a BEEC monolayer using a 96-well insert containing 8μm pores. Developmental rates were compared by chi-square test and P-values were adjusted by Tukey’s test. The percentage of embryos that had developed from morula into blastocyst stage on Day 7.5 was significantly higher in the direct and indirect contact co-culture (65%; P&lt;0.05) groups compared with the control (53%) group. Moreover, 63% of the blastocysts were expanded, hatching, or hatched in the co-culture groups, whereas a rate of 46% was found in the control counterparts (P&lt;0.05). In Exp. 3, the same experimental conditions from Exp. 2 were used, but groups of 15 Day 5.5 morulas were cultured in control, or conditioned medium from BEEC (CondBEEC) or bovine fibroblasts (CondFib). Blastocyst development rate on Day 7.5 was higher in the CondBEEC group (71%; P&lt;0.001) compared with the control (54%) and CondFib (50%) groups. In conclusion, based on the markers studied, BEEC monolayers undergo epithelial-mesenchymal transition in vitro but preserve functional characteristics after few passages. The co-culture system improves bovine embryonic development from morula into blastocyst stage. This support is BEEC specific and does not rely on a direct cell-to-embryo contact.


Sign in / Sign up

Export Citation Format

Share Document