Comparative structure and function of marsupial spermatozoa

1994 ◽  
Vol 6 (4) ◽  
pp. 421 ◽  
Author(s):  
PD Temple-Smith

Marsupial sperm structure has been the focus of many comparative studies in the last 30 years. Although the basic organization of the marsupial spermatozoon is similar to that of eutherian mammals, spermatozoa from this branch of therian evolution have developed a specific suite of characters which clearly distinguish them from the Eutheria. This review surveys these specializations and examines current knowledge on their respective functions and the forces which shaped their evolution. Nuclear shaping and stability, the asymmetric positioning of the acrosome, and the unusual neck articulation are discussed. Although recent observations have provided evidence of a marsupial equatorial segment and posterior ring, the marsupial equivalent of the eutherian postacrosomal sheath has not been identified. The unusual neck structure of marsupial spermatozoa and the mobile articulation of the connecting piece are discussed in relation to nuclear rotation and the events associated with this process. Increasing flagellar length in some species is associated with extremes in flagellar organization and its effect on sperm motility is discussed.

1999 ◽  
Vol 79 (1) ◽  
pp. S23-S45 ◽  
Author(s):  
DAVID N. SHEPPARD ◽  
MICHAEL J. WELSH

Sheppard, David N., and Michael J. Welsh. Structure and Function of the CFTR Chloride Channel. Physiol. Rev. 79 , Suppl.: S23–S45, 1999. — The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ABC transporter family that forms a novel Cl− channel. It is located predominantly in the apical membrane of epithelia where it mediates transepithelial salt and liquid movement. Dysfunction of CFTR causes the genetic disease cystic fibrosis. The CFTR is composed of five domains: two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory (R) domain. Here we review the structure and function of this unique channel, with a focus on how the various domains contribute to channel function. The MSDs form the channel pore, phosphorylation of the R domain determines channel activity, and ATP hydrolysis by the NBDs controls channel gating. Current knowledge of CFTR structure and function may help us understand better its mechanism of action, its role in electrolyte transport, its dysfunction in cystic fibrosis, and its relationship to other ABC transporters.


2019 ◽  
Vol 20 (6) ◽  
pp. 1353 ◽  
Author(s):  
Quan Wang ◽  
Sha Yang ◽  
Shubo Wan ◽  
Xinguo Li

As a secondary messenger, calcium participates in various physiological and biochemical reactions in plants. Photosynthesis is the most extensive biosynthesis process on Earth. To date, researchers have found that some chloroplast proteins have Ca2+-binding sites, and the structure and function of some of these proteins have been discussed in detail. Although the roles of Ca2+ signal transduction related to photosynthesis have been discussed, the relationship between calcium and photosynthesis is seldom systematically summarized. In this review, we provide an overview of current knowledge of calcium’s role in photosynthesis.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1467
Author(s):  
Anastasia Mozokhina ◽  
Rostislav Savinkov

This paper presents current knowledge about the structure and function of the lymphatic system. Mathematical models of lymph flow in the single lymphangion, the series of lymphangions, the lymph nodes, and the whole lymphatic system are considered. The main results and further perspectives are discussed.


1983 ◽  
Vol 61 (8) ◽  
pp. 942-948 ◽  
Author(s):  
Paul G. Scott

Macromolecules which appear to be integral constituents of basement membranes include type IV collagen, the glycoprotein laminin, and heparan sulphate proteoglycan. Another glycoprotein, fibronectin, may occupy an intermediate position between some lining cells and their basement membranes but is not, however, restricted to this location. An additional form of collagen, genetic type V which differs significantly from type IV collagen in structure, appears to be associated with some basement membranes, possibly linking them to underlying connective tissue. The main structural features of each of these macromolecules, as presently understood, are reviewed here as a background to the experimental papers in this "mini-symposium."


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 857 ◽  
Author(s):  
Cora Roehlecke ◽  
Mirko H. H. Schmidt

Intercellular communication among cancer cells and their microenvironment is crucial to disease progression. The mechanisms by which communication occurs between distant cells in a tumor matrix remain poorly understood. In the last two decades, experimental evidence from different groups proved the existence of thin membranous tubes that interconnect cells, named tunneling nanotubes, tumor microtubes, cytonemes or membrane bridges. These highly dynamic membrane protrusions are conduits for direct cell-to-cell communication, particularly for intercellular signaling and transport of cellular cargo over long distances. Tunneling nanotubes and tumor microtubes may play an important role in the pathogenesis of cancer. They may contribute to the resistance of tumor cells against treatments such as surgery, radio- and chemotherapy. In this review, we present the current knowledge about the structure and function of tunneling nanotubes and tumor microtubes in cancer and discuss the therapeutic potential of membrane tubes in cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document