135 THE EFFECT OF DIFFERENT TREATMENTS OF PORCINE EJACULATED AND EPIDIDYMAL SPERMATOZOA ON ROS GENERATION

2006 ◽  
Vol 18 (2) ◽  
pp. 176
Author(s):  
C. Matás ◽  
M. Sansegundo ◽  
S. Ruiz ◽  
J. Gadea

The production of pig embryos in vitro is still relatively inefficient compared with results obtained with oocytes matured and fertilized in vivo. The main reasons for this limited performance are polyspermy after IVF and the poor developmental ability of embryos produced by IVM-IVF (Kikuchi et al. 2002 Biol. Reprod. 1033-1041). Between factors affecting polyspermy are the sperm procedures before IVF. Usually, these procedures including centrifugations that increase reactive oxygen species (ROS) formation in spermatozoa. ROS play an important role in sperm physiology including capacitation. Physiological concentrations of ROS have been proposed to enhance sperm capacitation by increasing cAMP synthesis and by inhibiting protein tyrosine phosphatases whilst activating tyrosine kinases. In general, epididymal spermatozoa appear to be able to capacitate and fertilize eggs in vitro much more easily than ejaculated spermatozoa (Yanagimachi Mammalian Fertilization. In: The Physiology of Reproduction, Raven Press 1988; 135-182). In this study, we investigated how different sources (ejaculated spermatozoa vs. epididymal spermatozoa) and sperm capacitating methods, usually employed in porcine IVF, could be affect ROS generation. Sperm-rich fractions from five fertile boars and sperm from five different epididyimides were used. The semen samples were then: (i) washed in Dulbecco's phosphate-buffered saline (DPBS) supplemented with 0.1% BSA, (ii) left unwashed, or (iii) washed on a Percoll (Pharmacia, Uppsala, Sweden) gradient (Mat�s et al. 2003 Reproduction 125, 133-141). Production of ROS was measured by incubating the spermatozoa in the in vitro fertilization medium (TALP) in the presence of 0.7 �m 22,72-dichlorodihydrofluorescein diacetate at 37�C under 5% CO2 in 100% humidified air. Every 15 min (from 15 to 135) the samples were analyzed and evaluated by flow cytometry. Measurements were expressed as the mean green intensity fluorescence units and it was used as index of ROS generation (Gadea et al. 2005 J. Androl. 26, 396-404). ANOVA analysis revealed a significant effect of sperm treatment on the ROS generation (P < 0.001). The highest value was obtained in sperm washed on a Percoll gradient and the lowest in unwashed semen. When ejaculated vs. epididymal semen was analyzed, the same tendency was observed in both. However, the values were always lower in epididymal semen than in ejaculated semen (P < 0.001). As a conclusion, ROS generation is different between treatments and between semen procedures for the time interval studied, and this finding may help to explain the different outcome in IVF among laboratories. This work was supported by Ministerio de Educaci�n y Ciencia, AGL2003-03144.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jean-Ju Chung ◽  
Kiyoshi Miki ◽  
Doory Kim ◽  
Sang-Hee Shim ◽  
Huanan F Shi ◽  
...  

We report that the Gm7068 (CatSpere) and Tex40 (CatSperz) genes encode novel subunits of a 9-subunit CatSper ion channel complex. Targeted disruption of CatSperz reduces CatSper current and sperm rheotactic efficiency in mice, resulting in severe male subfertility. Normally distributed in linear quadrilateral nanodomains along the flagellum, the complex lacking CatSperζ is disrupted at ~0.8 μm intervals along the flagellum. This disruption renders the proximal flagellum inflexible and alters the 3D flagellar envelope, thus preventing sperm from reorienting against fluid flow in vitro and efficiently migrating in vivo. Ejaculated CatSperz-null sperm cells retrieved from the mated female uterus partially rescue in vitro fertilization (IVF) that failed with epididymal spermatozoa alone. Human CatSperε is quadrilaterally arranged along the flagella, similar to the CatSper complex in mouse sperm. We speculate that the newly identified CatSperζ subunit is a late evolutionary adaptation to maximize fertilization inside the mammalian female reproductive tract.


2021 ◽  
Author(s):  
Bhawna Kushwaha ◽  
Rohit Beniwal ◽  
Aradhana Mohanty ◽  
Ajay Kumar Singh ◽  
Raj Kumar Yadav ◽  
...  

Sperm capacitation is the key event prior to fertilization. Success rate of currently used assisted reproductive technology like in-vitro fertilization is 50% dependent on sperm maturation or capacitation. In-vivo capacitation occur almost in female reproductive tract in response to various signaling or enzymatic molecules. Interestingly, both early and late events of capacitation are centrally regulated by protein kinase A (PKA). Influx of Ca2+ and HCO3-transmembrane drive leads to change in pH and intracellular cAMP which ultimately activate PKA regulated capacitation. PKA phosphorylates several target proteins that are presumed to initiate different signaling pathways. Some divalent heavy metals like lead, mercury, arsenic and cadmium mimic Ca++ entry and its functions and ultimately affect capacitation by inhibiting or inducing tyrosine phosphorylation. In this chapter we review the mechanism of heavy metals by which they affect the tyrosine phosphorylation during sperm capacitation.


2021 ◽  
Vol 22 (9) ◽  
pp. 4368
Author(s):  
Heriberto Rodriguez-Martinez ◽  
Emilio A. Martinez ◽  
Juan J. Calvete ◽  
Fernando J. Peña Vega ◽  
Jordi Roca

Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA—the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tong Chen ◽  
Qiang Chu ◽  
Mengyang Li ◽  
Gaorong Han ◽  
Xiang Li

AbstractElectrodynamic therapy (EDT) has recently emerged as a potential external field responsive approach for tumor treatment. While it presents a number of clear superiorities, EDT inherits the intrinsic challenges of current reactive oxygen species (ROS) based therapeutic treatments owing to the complex tumor microenvironment, including glutathione (GSH) overexpression, acidity and others. Herein for the first time, iron oxide nanoparticles are decorated using platinum nanocrystals (Fe3O4@Pt NPs) to integrate the current EDT with chemodynamic phenomenon and GSH depletion. Fe3O4@Pt NPs can effectively induce ROS generation based on the catalytic reaction on the surface of Pt nanoparticles triggered by electric field (E), and meanwhile it may catalyze intracellular H2O2 into ROS via Fenton reaction. In addition, Fe3+ ions released from Fe3O4@Pt NPs under the acidic condition in tumor cells consume GSH in a rapid fashion, inhibiting ROS clearance to enhance its antitumor efficacy. As a result, considerable in vitro and in vivo tumor inhibition phenomena are observed. This study has demonstrated an alternative concept of combinational therapeutic modality with superior efficacy.


2021 ◽  
Vol 22 (13) ◽  
pp. 7202
Author(s):  
Tamara Bruna ◽  
Francisca Maldonado-Bravo ◽  
Paul Jara ◽  
Nelson Caro

Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 547
Author(s):  
Marina Ramal-Sanchez ◽  
Antonella Fontana ◽  
Luca Valbonetti ◽  
Alessandra Ordinelli ◽  
Nicola Bernabò ◽  
...  

Since its discovery, graphene and its multiple derivatives have been extensively used in many fields and with different applications, even in biomedicine. Numerous efforts have been made to elucidate the potential toxicity derived from their use, giving rise to an adequate number of publications with varied results. On this basis, the study of the reproductive function constitutes a good tool to evaluate not only the toxic effects derived from the use of these materials directly on the individual, but also the potential toxicity passed on to the offspring. By providing a detailed scientometric analysis, the present review provides an updated overview gathering all the research studies focused on the use of graphene and graphene-based materials in the reproductive field, highlighting the consequences and effects reported to date from experiments performed in vivo and in vitro and in different animal species (from Archea to mammals). Special attention is given to the oxidized form of graphene, graphene oxide, which has been recently investigated for its ability to increase the in vitro fertilization outcomes. Thus, the potential use of graphene oxide against infertility is hypothesized here, probably by engineering the spermatozoa and thus manipulating them in a safer and more efficient way.


Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Dezhong Wang ◽  
Yuan Yin ◽  
Shuyi Wang ◽  
Tianyang Zhao ◽  
Fanghua Gong ◽  
...  

AbstractAs a classically known mitogen, fibroblast growth factor 1 (FGF1) has been found to exert other pleiotropic functions such as metabolic regulation and myocardial protection. Here, we show that serum levels of FGF1 were decreased and positively correlated with fraction shortening in diabetic cardiomyopathy (DCM) patients, indicating that FGF1 is a potential therapeutic target for DCM. We found that treatment with a FGF1 variant (FGF1∆HBS) with reduced proliferative potency prevented diabetes-induced cardiac injury and remodeling and restored cardiac function. RNA-Seq results obtained from the cardiac tissues of db/db mice showed significant increase in the expression levels of anti-oxidative genes and decrease of Nur77 by FGF1∆HBS treatment. Both in vivo and in vitro studies indicate that FGF1∆HBS exerted these beneficial effects by markedly reducing mitochondrial fragmentation, reactive oxygen species (ROS) generation and cytochrome c leakage and enhancing mitochondrial respiration rate and β-oxidation in a 5’ AMP-activated protein kinase (AMPK)/Nur77-dependent manner, all of which were not observed in the AMPK null mice. The favorable metabolic activity and reduced proliferative properties of FGF1∆HBS testify to its promising potential for use in the treatment of DCM and other metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document