338 INFLUENCE OF OOCYTE DIAMETER AND MORPHOLOGY ON APOPTOSIS AND BLASTOCYST DEVELOPMENT IN PREPUBERTAL GOAT

2007 ◽  
Vol 19 (1) ◽  
pp. 284
Author(s):  
B. Anguita ◽  
M. T. Paramio ◽  
A. R. Jimenez-Macedo ◽  
R. Romaguera ◽  
R. Morato ◽  
...  

In vitro embryo production from prepubertal females is lower than from adult females. There are different hypotheses to explain this fact. The aim of this study was to analyze the apoptosis of prepubertal goat oocytes and its relationship to embryo development according to oocyte diameters. Oocytes from slaughtered prepubertal goats were recovered by slicing, and classified as: healthy (H: compact cumulus cells and homogeneous cytoplasm) and early atresic (EA: granulated cytoplasm and/or initial cumulus expansion), and by oocyte diameter: 110–125 µm, 125–135 µm, and >135 µm. They were matured in TCM-199 for 27 h at 38.5°C and 5% CO2 in air. After maturation, a sample of oocytes was denuded, and oocytes and cumulus cells, separately, were analyzed by TUNEL assay (In Situ Cell Death Detection Kit; Roche Diagnostics SL, Barcelona, Spain) to study the apoptosis. The rest of oocytes were fertilized in vitro and the presumptive zygotes were cultured for 8 days in SOF at 38.5°C, 5% CO2 and 90% N2. Results are shown in Table 1. Fisher's exact test showed a significantly higher percentage of blastocyst formation in the largest oocytes than in those with smaller diameters; moreover, the largest healthy oocytes produced a higher rate of blastocyst formation than the early atretic oocytes of the same diameter group. TUNEL assay showed that the percentage of apoptotic oocytes was lower in the largest healthy oocytes, whereas in early atresic oocytes, apoptosis was not related to oocyte size. After maturation, the percentage of apoptotic cumulus cells was low (10% of cells) in all oocyte categories. However, in the early atretic group, the percentage of apoptotic cumulus cells increased in oocytes < 125 µm. In conclusion, in prepubertal goat oocytes, the percentage of blastocysts formed depends on oocyte diameter and the percentage of apoptotic cumulus cells. Table 1.Effect of oocyte diameter and morphology on apoptosis and blastocyst development This work was supported by a grant from Generalitat de Catalunya (2006FIC 00187) and a grant from the Universitat Autonoma de Barcelona (EME-2004-25).

2008 ◽  
Vol 20 (1) ◽  
pp. 109 ◽  
Author(s):  
B. S. Song ◽  
J. S. Kim ◽  
X. L. Jin ◽  
Y. Y. Lee ◽  
Y. J. Cho ◽  
...  

Interspecies somatic cell nuclear transfer (iSCNT) is an invaluable tool for studying nucleus–cytoplasm interaction and it provides a possible alternative to cloning animals whose oocytes are limited. In Experiment 1 of the present study, we investigated the developmental potential of iSCNT embryos created from monkey, pig, and goat donor cells and bovine cytoplasts. Bovine ovaries were obtained at a local slaughterhouse and the cumulus-oocyte complexes (COCs) aspirated. COCs were matured in vitro in TCM-199 supplemented with 10 IU mL–1 pregnant mare serum gonadotropin (PMSG), 10 IU mL–1 hCG, and 10 ng mL–1 epidermal growth factor (EGF) at 38.5�C and 5% CO2 in air for 20–22 h. At the end of IVM, half of the COCs were inseminated using frozen semen (1 � 106 sperm mL–1) and the remainder were used for iSCNT after the cumulus cells were removed with 0.1% hyaluronidase in TCM-199. The procedure of iSCNT and establishment of donor cells were according to Koo et al. (2002 Biol. Reprod. 67, 487–492). After IVF and iSCNT, presumptive zygotes were cultured in CR1-aa medium supplement with 0.3% BSA. After 3 days, cleaved embryos were transferred to CR1-aa medium supplemented with 10% FBS and cultured for an additional 4 days. In Experiment 2, we investigated the developmental ability of reconstructed embryos produced from monkey cells and bovine cytoplasts using various IVC media, such as IVC-1/2 (InVitroCare, Frederick, MD, USA), G-1/2 (Vitrolife, Inc., Englewood, CO, USA) and complete medium (CM; Irvine Scientific, Santa Clara, CA, USA). All experiments were repeated more than three times and data were analyzed with t-test of one-way ANOVA using the SAS 8.01 program (SAS Institute, Inc., Cary, NC, USA). Cleavage and developmental rate of blastocysts were expressed as mean � SEM. In Experiment 1, we investigated the development ability among IVF, SCNT (bovine-bovine), and iSCNT (monkey-bovine, pig-bovine, and goatbovine) embryos cultured in CR1-aa medium. Our results showed that the cleavage rate of IVF (73.6 � 1.8%, 86/117) embryos was not significantly different compared to SCNT (84.6 � 2.7%, 38/45), and iSCNT (89.3 � 2.7%, 100/110, monkey; 89.3 � 3.3%, 45/49, pig; and 86.0 � 2.3%, 87/95, goat). Although cloned embryos reconstructed with monkey cells did not develop to the blastocyst stage, iSCNT embryos derived from pig and goat cells did (3.3 � 3.0%, 2/49, and 7.9 � 1.7%, 7/95, respectively). However, these blastocyst formation rates were significantly lower compared to those of IVF and SCNT bovine embryos (32.5 � 2.9%, 38/117, and 26.7 � 2.8%, 12/88, respectively; P < 0.05). The success of iSCNT was confirmed by PCR of mitochondrial DNA, porcine PKA region, and SRY region. In Experiment 2, we investigated the developmental potential of cloned embryos produced by monkey cells using various IVC media (IVC-1/2, G-1/2, and CM). The cleavage rate of iSCNT embryos was not significantly different among these media (86.9 � 2.7%, 78.1 � 2.1%, and 82.3 � 1.8%, respectively). However, we did not observe blastocyst formation using these media. Therefore, we suggest that the cytoplasts of bovine oocytes can support blastocyst development of cloned embryos with pig and goat cells, but they were not suitable for monkey cells. In conclusion, our results suggest that species-specific differences are apparent in the production of iSCNT embryos.


2011 ◽  
Vol 23 (1) ◽  
pp. 156
Author(s):  
D. Hufana-Duran ◽  
P. G. Duran ◽  
E. P. Atabay ◽  
Y. Kanai ◽  
Y. Takahashi ◽  
...  

External parametric indicators for in vitro developmentally competent water buffalo oocytes were determined. Oocytes were retrieved from ovarian follicles and classified based on the 1) density of surrounding cumulus cells (Rank A, n = 94: with >5 layers, Rank B, n = 73: with 3 to 5 layers, Rank C, n = 73: with <3 layers, Rank D, n = 63: with irregular or denuded from cumulus cells, and Rank E, n = 42: with expanded cumulus cells, and 2) granulation of ooplasm (Homogeneous, n = 164: evenly granulated, Heterogeneous, n = 180: not evenly granulated where some part is either light or dark), 3) size of the ooplasm, n = 647 (<100, n = 87; 100–119, n = 312; 120–139, n = 164; ≥140 μm, n = 84), and 4) size of the donor antral follicle, n = 688 (<2, n = 244; 2 to 3.9, n = 221; 4 to 5.9, n = 116; 6 to 7.9, n = 61; ≥8 mm, n = 46). Oocytes classified based on these parameters were matured for 22 to 24 h and the nuclear maturation was examined with cleavage rate and blastocyst development rate assessed after in vitro fertilization. To validate the hypothesis that oocytes with compact cumulus (n = 248) are at growing phase while those with loose cumulus (n = 270) are at developmental phase, they were matured and fertilized in vitro at shorter (20 to 22 h) or longer (24 to 26 h) period and embryo development was assessed. Each study was replicated 5 to 10 times. Data were statistically analysed by chi-square test, Fisher’s exact test, and correlation analysis. Results showed that oocytes surrounded by multi-layers (>5 layers) of cumulus cells had highest developmental competence. Oocytes with a diameter of <100 μm lacked developmental competence, evidenced by the failure to develop to metaphase II (MII) after in vitro maturation (IVM), whereas oocytes with diameter of ≥100 μm developed to MII and cleaved after IVF. Optimum cleavage (96.8%) and blastocyst development (27.0%) was observed in oocytes with ≥120 μm. The size of the donor follicle was linearly correlated with oocyte developmental competence with follicles ≥6 mm containing highly developmentally competent oocyte. Based on the findings, oocytes surrounded by >3 layers of compact or loose cumulus with evenly granulated and with ∼110 μm diameter ooplasm and derived from ≥4 mm follicles are developmentally competent. Oocytes with a compact cumulus required 24 to 26 h of IVM while those with loose cumulus required 20 to 22 h of IVM for optimum blastocyst development. These results suggest that the density and compactness of the surrounding cumulus, and the diameter of ooplasm and donor follicles are positive indicators for oocytes with developmental competence.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Sánche. González ◽  
A Flores-Saiffe ◽  
R Valencia-Murillo ◽  
G Mendizabal-Ruiz ◽  
A Chavez-Badiol

Abstract Study question Can machine learning (ML) predict oocyte’s fertilization and blastocyst development potential based on morphological features extracted from single static images? Summary answer AI accurately predicted 70.4% of fertilization and 60.4% of blastocyst development outcomes from a database of 1000 oocytes. What is known already Some morphological features of the oocyte have been associated with IVF-related outcomes, such as size, shape, and coloration of zona pellucida, polar body, perivitelline space, cytoplasm, and the meiotic spindle. Based on these characteristics, clinics might discard the low-quality oocytes according to a subjective assessment. AI-based algorithms could reduce the subjectivity and improve prediction on IVF outcomes such as successful fertilization and blastocyst development. Study design, size, duration Non-intervention study based on a cohort of 1000 oocytes’ micrographs collected between January 2019 and December 2020 from two IVF clinics. The inclusion criteria were known fertilization and blastocyst development outcome, and patient’s age between 25 and 45 years old undergoing IVF/ICSI treatment. Different features were considered for this study including metadata from oocyte’s (e.g. age, source), as well as manually extracted morphological features from the oocytes’ images (e.g. diameters, shape, granularity, presence/absence of spindle). Participants/materials, setting, methods We trained three machine-learning (ML) classifiers (i.e. Support Vector Machine, logistic regression, and neural networks) to predict successful fertilization and blastocyst development. For the training process we used a 10-fold cross validation approach to assess the model’s generalization capabilities. Besides we tested the statistical difference of each feature among groups (i.e. fertilized and no fertilized) using a two sided Student’s t-test for numerical and Z-test for categorial features (significance of p &lt; 0.01). Main results and the role of chance Our database showed 68.2% of successful fertilization and 34.8% of blastocyst formation. To balance the training data (50% per training class), we aleatory selected 318 and 348 samples per branch of successful/unsuccessful fertilization and blastocyst formation, respectively. From all ML classifiers, the neural network obtained the best results with an accuracy of 0.70 (AUC of 0.74) for predicting fertilization; and an accuracy of 0.60 (AUC of 0.62), for predicting blastocyst formation. We found that spherical shape, presence of meiotic spindle, clear coloration, larger oocyte diameter, thicker zona pellucida, and smaller vacuoles are statistically associated with both successful outcomes. As expected, we also found a strong association between age groups and outcome. The younger group (&lt;35 years) demonstrated to have a larger proportion of successful fertilization compared to the rest of the age groups (36–37, 38–39, 40–42, &gt;42). For the blastocyst formation we observed a similar association. Limitations, reasons for caution It is relevant to note that all cycles were performed under a mini-IVF protocol. Oocytes extracted through conventional stimulation might show the same associations, but it would need further testing. Wider implications of the findings: The present study revealed that our system can predict fertilization success and blastocyst development potential based on metadata and morphometric features extracted from single digital micrographs of oocytes, offering a novel, adaptable and robust integration into clinical practice. Trial registration number CONBIOETICA–09-CEI–001–2017–0131


2005 ◽  
Vol 17 (2) ◽  
pp. 237 ◽  
Author(s):  
G. Lazzari ◽  
I. Lagutina ◽  
G. Crotti ◽  
P. Turini ◽  
S. Colleoni ◽  
...  

Attempts to derive true embryonic stem cells in large farm animals rely on the supply of good quality embryos. In these species, including the pig, pre-implantation-stage embryos can be produced by in vitro techniques from slaughterhouse ovaries. The objective of this study was to evaluate the ability of the inner cell masses (ICMs) of pig embryos, produced in vitro by different methods, to provide viable initial outgrowths of ICM cells that could be subsequently subcultured and expanded. Porcine oocytes were recovered from slaughtered donors and matured in vitro for 40–44 h in DMEM-F12 supplemented with 10% FCS, 0.05 IU LH and FSH (Menogon, Ferring, Milan, Italy), 0.3 mM cystine, 0.5 mM cysteamine, 50 ng/mL long-EGF, 100 ng/mL long-IGF1, 5 ng/mL bFGF (Sigma-Aldrich, Milan, Italy) in 5% CO2 at 38.5°C. Boar frozen-thawed semen was separated on a percoll gradient and diluted in TALP medium with PHE (penicillamine, hypotaurine, epinefrine) to a concentration ranging from 0.05 to 0.1 million sperm per mL. Oocytes were partially decumulated, co-incubated with sperm for 24 h, and finally denuded and cultured in microdrops of mSOFaa or NCSU. After cleavage, approximately half of the cleaved embryos were surgically transferred into the sheep oviduct for 4 days of in vivo culture and the remaining embryos were left in vitro in the two media. On Day +6 in vivo-cultured embryos were recovered from the sheep oviduct. Blastocyst formation and quality were comparatively evaluated in the three culture groups. Quality specifically referred to the morphology/size of the ICM according to the following criteria: ICM A (large/prominent), ICM B (flat), and ICM C (non-visible). All embryos with a visible inner cell mass were subjected to microdissection with needles to recover the ICMs that were then plated on feeder-layers of mitomycin-treated STO fibroblasts. Attachment and outgrowth was evaluated 48–72 h post-plating. Results are presented in Table 1. Our data indicate that in vivo culture of pig embryos in the sheep oviduct greatly enhance both blastocyst development and ICM quality. As a consequence the efficiency of outgrowth formation, following plating for ES cell derivation, was significantly higher with ICMs derived from IVM-IVF pig embryos cultured in vivo as compared to their in vitro-cultured counterparts. Within the two culture media tested for in vitro culture, SOF and NCSU, the rate of blastocyst formation was similar but the quality of SOF-cultured embryos is higher. In conclusion, embryo/ICM quality represents a fundamental requirement for the derivation of ES cell lines, and in vivo culture in the sheep oviduct provides the most efficient source of high quality IVM-IVF pig embryos. Table 1. Blastocyst development and ICM quality of in vitro-produced pig embryos This work was supported by the Istituto Superiore di Sanità, Programma Nazionale Cellule Staminali, Rome, Italy, grant No. CS 11.


2006 ◽  
Vol 18 (2) ◽  
pp. 278
Author(s):  
K. A. Preis ◽  
G. E. Seidel Jr ◽  
D. K. Gardner

In vitro maturation of immature oocytes results in limited success in both clinical and research laboratories. Although reduced oxygen concentration is beneficial to embryo development, the optimal concentration for oocyte maturation has yet to be determined. The objective of this study was to determine whether oxygen tension (20% or 5% O2) affects oocyte physiology. Additionally, the effect of epidermal growth factor (EGF) in maturation medium on oocyte metabolic activity and subsequent embryo development was determined. Cumulus–oocyte complexes (COCs; n = 231) were collected from 28-day-old unprimed F1 (C57BL/6 × CBA/ca) mice. COCs were individually matured in defined medium at 37°C in 6% CO2 in one of four groups (Table 1). For the metabolism study, COCs were further divided into two groups: individual maturation in a 2-µL drop of medium for 16 h (n = 131); or individual maturation in 5-μL for 12 h and then placed in a 0.5-μL drop of medium for 4 h (n = 100), the time of greatest metabolic activity of the COC. At 17 h of maturation, COCs were individually fertilized, and zygotes were individually cultured until 96 h, at which time blastocyst development was assessed. Metabolic profiles were analyzed by ANOVA, and blastocyst rates were analyzed by Fisher's exact test. Maturation rates and blastocyst development were not different between groups. However, at 12–16 h of maturation, metabolism of COCs was affected by both oxygen tension and EGF (Table 1). Concerning metabolism over the entire course of maturation, glucose uptake and lactate production were higher in COCs in 5% O2 + 100 ng EGF (P < 0.05) than in the remaining three groups. There was no difference between 5% O2 and 20% O2 + 100 ng EGF, but 20% O2 caused less glucose uptake and lactate production than did the other three treatment groups (P < 0.05). Results of this study are the first to show that oxygen tension alters COC metabolism: COCs matured under 5% O2 were more active metabolically than COCs matured under 20% O2. The effect of oxygen tension is to some extent moderated by the presence of EGF, as metabolic activity of COCs matured under 20% O2 + 100 ng EGF was closer to that of COCs matured under 5% O2 conditions. Although blastocyst rates were similar across the four groups, embryos derived from oocytes matured in different oxygen tensions may exhibit different developmental potential. In conclusion, results of this study have implications for the improvement of maturation conditions in both clinical and research laboratories. Table 1. Carbohydrate metabolism of individual COCs at 12–16 h of maturation


2007 ◽  
Vol 19 (1) ◽  
pp. 262
Author(s):  
W. Fujii ◽  
H. Funahashi

If diploid zygotes constituted with a somatic and a maternal genome could successfully develop to term, a new reproductive method would be developed to produce animals. However, there appears to be little information on this subject. In the present study, in vitro early development of the constituted zygotes was examined. A cumulus cell was microinjected into a rat non-enucleated oocyte, the reconstructed oocyte was chemically activated, and the pronuclear formation and in vitro development of the embryo was observed. Prepubertal Wistar female rats (21–27 days old) were induced to superovulate with an IP injection of 15 IU of eCG, followed by 15 IU of hCG 48 h later. Cumulus cells were removed from oocytes by pipetting with 0.1% hyaluronidase. Experiment 1: The DNA content of cumulus cells for microinjection was evaluated by flow cytometry. Experiment 2: The optimal concentration of SrCl2 for activation of rat oocytes was examined. Experiment 3: Cumulus cells were injected into mature oocytes in BSA-free HEPES-buffered mKRB containing 0.1% polyvinyl alcohol (PVA) and cytochalasin B (5 �g mL-1), and were then chemically activated by treatment in Ca2+-free mKRB containing 5 mM SrCl2 for 20 min at 0 to 0.5 (A), 1 to 1.5 (B), or 3 to 3.5 h (C) after injection. Activated embryos were cultured in droplets of mKRB in an atmosphere of 5% CO2 in air at 37�C for 9 to 12 h. After being observed for pronuclear formation, the embryos were transferred into mR1ECM-PVA, and the cleavage and blastocyst formation rates were examined 24 and 120 h later, respectively. Results from 3 to 7 replicates were analyzed by ANOVA and Duncan's multiple range test. A total of 90.0 and 9.5% of cumulus cells derived from ovulated oocyte–cumulus complexes contained 2C and 4C DNA contents, respectively. Survival rates did not differ among oocytes stimulated with 0 to 5 mM SrCl2 (96.7–100%) but did differ between those stimulated with 1.25 and 10 mM SrCl2 (100 and 72.9%, respectively). Activation rates of oocytes increased at higher SrCl2 concentrations and were higher at 5 and 10 mM (92.6 and 98.5%, respectively) than at other concentrations. When cumulus-injected oocytes were activated after various periods after the injection, the incidences of pronuclear formation and cleavage did not differ among the periods (A: 95.0 and 81.3%; B: 85.6 and 85.0%; and C: 82.7 and 84.6%, respectively). Although a majority of the embryos developed to the 2- to 4-cell stages (78.7%; 152/208), the blastocyst formation rate was very low (0.8%; 2/208). In conclusion, rat non-enucleated oocytes injected with a cumulus cell can form pronuclei and cleave following chemical activation, but blastocyst formation of the embryos is very limited.


2015 ◽  
Vol 27 (1) ◽  
pp. 112 ◽  
Author(s):  
Y. H. Choi ◽  
I. C. Velez ◽  
B. Macías-García ◽  
K. Hinrichs

In equine cloning, the scarcity of equine oocytes places emphasis on development of the most efficient nuclear transfer (NT) methods possible. In other species, using oocytes matured for the shortest duration needed to reach metaphase II has increased NT efficiency. In the present study, we examined the effect of duration of oocyte maturation at the time of enucleation on equine cloned blastocyst production. Oocytes were collected from live mares by transvaginal ultrasound-guided aspiration of all visible follicles ≥5 mm in diameter. The oocytes were held overnight (16–22 h) at room temperature, matured in vitro, and reconstructed with donor cells as described in our previous study (Choi et al. 2013 Theriogenology 79, 791–796). In Experiment 1, oocytes were divided into 2 groups and matured for 20 or 24 h. After enucleation, oocytes were reconstructed by direct injection of donor cells. Reconstructed oocytes were held for 5 h and then activated by treatment with 5 μM ionomycin for 4 min, then injection with sperm extract, followed by incubation in 2 mM 6-DMAP for 4 h. The activated reconstructed oocytes were cultured in global human embryo culture medium under 5% CO2, 6% O2, and 89% N2 at 38.2°C for 7 to 11 days (20 mM glucose was added at Day 5) and blastocyst rate was recorded. Because a low maturation rate was found at 20 h in Experiment 1, in Experiment 2 oocytes were denuded at 20 h and those that were mature were enucleated and used for NT; those that had not cast out a polar body at 20 h were cultured for an additional 3 h (20 + 3h) and then evaluated for polar body formation and used for NT, which was conducted as in Experiment 1. Data were analysed by Fisher's exact test. In Experiment 1, 203 oocytes were collected in 46 aspiration sessions. The rate of oocyte maturation to metaphase II was significantly lower for oocytes cultured for 20 h (35/116, 30%), than for those cultured for 24 h (47/80, 59%). However, the rate of blastocyst development was significantly higher for oocytes cultured for 20 h (11/27, 41%) than for 24 h (2/38, 5%). In Experiment 2, 89 oocytes were collected in 18 aspiration sessions. After 20 h of maturation culture, 22 oocytes were mature (25%). After an additional 3 h of culture, 21 additional oocytes had matured. There were no significant differences between the two treatments (20 and 20 + 3h) in reconstruction rates (77%, 17/22, and 90%, 19/21, respectively) or blastocyst rates (24%, 4/17, and 32%, 6/19, respectively). These results indicate that duration of in vitro maturation, or the duration of presence of cumulus cells, influences blastocyst development after somatic cell NT in the horse. This appears to be due to a benefit of using oocytes immediately after they reach metaphase II; if this is ensured as in Experiment 2, the duration of maturation itself had no effect.This work was supported by the American Quarter Horse Foundation, the Link Equine Research Endowment Fund, Texas A&M University, and by Ms. Kit Knotts.


2004 ◽  
Vol 16 (2) ◽  
pp. 275
Author(s):  
D. Fischer ◽  
J. Bordignon ◽  
C. Robert ◽  
D. Betts

Environment is crucial for in vitro development of gametes and embryos. The recent progression of culture media towards defined conditions brought to surface the impact of different medium supplements on oocyte and embryo development. In this work we evaluate the effect of various oocyte culture media on bovine oocyte maturation and subsequent embryo development. Bovine cumulus-oocyte complexes were recovered from slaughterhouse ovaries and matured in vitro in either TCM-199 (Gibco) or SOF (Synthetic Oviduct Fluid) media supplemented with BSA (fatty acid-free) or serum (fetal bovine serum). Oocytes from each treatment group were denuded and fixed at 18, 20, 22, 24, 26 and 28h post-maturation (p.m.). Oocyte meiotic progression was monitored in each of the groups (n=28–40 oocytes/group) by immunofluorescence microscopy of chromatin. Oocytes matured in SOF showed a slower rate of meiotic progression when compared to the other groups, with the highest percentage of oocytes reaching the MII stage by 28h p.m. (60.71% SOF-BSA, 71.43% SOF-Serum). The fastest developmental rate was observed in oocytes matured in TCM-serum (77.15% at 24h p.m.) followed by oocytes matured in TCM-BSA (74.29% at 26h p.m.). In order to evaluate the effect of nuclear maturation on chromosome segregation, chromosomal organization of MII oocytes was evaluated by immunofluorescence microscopy within each media group (n=26–31 oocytes/group) at 18, 22 and 26h p.m.. No chromosomal abnormalities were found at 18h p.m.. Both media supplemented with BSA induced lower frequencies of chromosomal abnormalities (0 to 3.23%) and (3.57 to 7.69%) for SOF and TCM, respectively, when compared to their serum-supplemented counterparts (7.14 to 11.54%) and (10 to 10.71%) for SOF and TCM, respectively at 22 and 26h p.m.. Remarkably, the maturation medium and its supplements influenced the speed of blastocyst development. For this experiment, oocytes were matured in TCM-BSA, TCM-Serum, SOF-BSA or SOF-serum, fertilized in vitro in a TALP-base media supplemented with BSA and cultured in SOF-BSA. Blastocyst development was assessed at 7, 8 and 9 days of culture. Cleavage rates were similar between the groups (84–90%), whereas development rates to blastocyst stage varied among treatment groups. Maturation in SOF-BSA induced a delay in blastocyst formation that reached its highest percentage only on day 9 of culture (30.8%); moreover, blastocyst development was carried over until Day 12. When oocytes were matured in the presence of serum, the number of blastocysts did not increase after Day 8 of culture (26.6%, TCM-serum). These results provide evidence of a severe impact of oocyte culture media on the nuclear maturation of oocytes and their subsequent embryonic development after IVF. Moreover, the difference in the rate of oocyte maturation and blastocyst formation emphasizes the necessity for reviewing and adapting current protocols to new systems such as SOF-BSA. [Research funded by NSERC and OMAF of Canada.]


Zygote ◽  
2005 ◽  
Vol 13 (2) ◽  
pp. 177-185 ◽  
Author(s):  
A. Nader Fatehi ◽  
Bernard A.J. Roelen ◽  
Ben Colenbrander ◽  
Eric J. Schoevers ◽  
Bart M. Gadella ◽  
...  

The present study was conducted to evaluate the function of cumulus cells during bovine IVF. Oocytes within cumulus–oocyte complexes (COCs) or denuded oocytes (DOs) were inseminated in control medium, or DOs were inseminated in cumulus cell conditioned medium (CCCM). DOs exhibited reduced cleavage and blastocyst formation rates when compared with intact COCs. The reduced blastocyst formation rate of DOs resulted from reduced first cleavage but subsequent embryo development was not changed. Live-dead staining and staining for apoptotic cells revealed no differences in blastocysts from oocytes fertilized as COC or DO. Fertilization of DOs in CCCM partially restored the cleavage rate, suggesting that factors secreted by cumulus cells are important for fertilization but that physical contact between oocytes and cumulus cells is required for optimal fertilization and first cleavage. Exposure of COCs to hydrogen peroxide shortly before fertilization reduced the cleavage rate, but did not lead to enhanced death of cumulus cells or oocyte death. Exposure of DOs to hydrogen peroxide, however, resulted in oocyte death and a complete block of first cleavage, suggesting that cumulus cells protect the oocyte against oxidative stress during fertilization.


Sign in / Sign up

Export Citation Format

Share Document