P–245 Machine learning predicting oocyte’s fertilization and blastocyst potential based on morphological features

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Sánche. González ◽  
A Flores-Saiffe ◽  
R Valencia-Murillo ◽  
G Mendizabal-Ruiz ◽  
A Chavez-Badiol

Abstract Study question Can machine learning (ML) predict oocyte’s fertilization and blastocyst development potential based on morphological features extracted from single static images? Summary answer AI accurately predicted 70.4% of fertilization and 60.4% of blastocyst development outcomes from a database of 1000 oocytes. What is known already Some morphological features of the oocyte have been associated with IVF-related outcomes, such as size, shape, and coloration of zona pellucida, polar body, perivitelline space, cytoplasm, and the meiotic spindle. Based on these characteristics, clinics might discard the low-quality oocytes according to a subjective assessment. AI-based algorithms could reduce the subjectivity and improve prediction on IVF outcomes such as successful fertilization and blastocyst development. Study design, size, duration Non-intervention study based on a cohort of 1000 oocytes’ micrographs collected between January 2019 and December 2020 from two IVF clinics. The inclusion criteria were known fertilization and blastocyst development outcome, and patient’s age between 25 and 45 years old undergoing IVF/ICSI treatment. Different features were considered for this study including metadata from oocyte’s (e.g. age, source), as well as manually extracted morphological features from the oocytes’ images (e.g. diameters, shape, granularity, presence/absence of spindle). Participants/materials, setting, methods We trained three machine-learning (ML) classifiers (i.e. Support Vector Machine, logistic regression, and neural networks) to predict successful fertilization and blastocyst development. For the training process we used a 10-fold cross validation approach to assess the model’s generalization capabilities. Besides we tested the statistical difference of each feature among groups (i.e. fertilized and no fertilized) using a two sided Student’s t-test for numerical and Z-test for categorial features (significance of p < 0.01). Main results and the role of chance Our database showed 68.2% of successful fertilization and 34.8% of blastocyst formation. To balance the training data (50% per training class), we aleatory selected 318 and 348 samples per branch of successful/unsuccessful fertilization and blastocyst formation, respectively. From all ML classifiers, the neural network obtained the best results with an accuracy of 0.70 (AUC of 0.74) for predicting fertilization; and an accuracy of 0.60 (AUC of 0.62), for predicting blastocyst formation. We found that spherical shape, presence of meiotic spindle, clear coloration, larger oocyte diameter, thicker zona pellucida, and smaller vacuoles are statistically associated with both successful outcomes. As expected, we also found a strong association between age groups and outcome. The younger group (<35 years) demonstrated to have a larger proportion of successful fertilization compared to the rest of the age groups (36–37, 38–39, 40–42, >42). For the blastocyst formation we observed a similar association. Limitations, reasons for caution It is relevant to note that all cycles were performed under a mini-IVF protocol. Oocytes extracted through conventional stimulation might show the same associations, but it would need further testing. Wider implications of the findings: The present study revealed that our system can predict fertilization success and blastocyst development potential based on metadata and morphometric features extracted from single digital micrographs of oocytes, offering a novel, adaptable and robust integration into clinical practice. Trial registration number CONBIOETICA–09-CEI–001–2017–0131

Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 374 ◽  
Author(s):  
Sudhanshu Kumar ◽  
Monika Gahalawat ◽  
Partha Pratim Roy ◽  
Debi Prosad Dogra ◽  
Byung-Gyu Kim

Sentiment analysis is a rapidly growing field of research due to the explosive growth in digital information. In the modern world of artificial intelligence, sentiment analysis is one of the essential tools to extract emotion information from massive data. Sentiment analysis is applied to a variety of user data from customer reviews to social network posts. To the best of our knowledge, there is less work on sentiment analysis based on the categorization of users by demographics. Demographics play an important role in deciding the marketing strategies for different products. In this study, we explore the impact of age and gender in sentiment analysis, as this can help e-commerce retailers to market their products based on specific demographics. The dataset is created by collecting reviews on books from Facebook users by asking them to answer a questionnaire containing questions about their preferences in books, along with their age groups and gender information. Next, the paper analyzes the segmented data for sentiments based on each age group and gender. Finally, sentiment analysis is done using different Machine Learning (ML) approaches including maximum entropy, support vector machine, convolutional neural network, and long short term memory to study the impact of age and gender on user reviews. Experiments have been conducted to identify new insights into the effect of age and gender for sentiment analysis.


2007 ◽  
Vol 19 (1) ◽  
pp. 284
Author(s):  
B. Anguita ◽  
M. T. Paramio ◽  
A. R. Jimenez-Macedo ◽  
R. Romaguera ◽  
R. Morato ◽  
...  

In vitro embryo production from prepubertal females is lower than from adult females. There are different hypotheses to explain this fact. The aim of this study was to analyze the apoptosis of prepubertal goat oocytes and its relationship to embryo development according to oocyte diameters. Oocytes from slaughtered prepubertal goats were recovered by slicing, and classified as: healthy (H: compact cumulus cells and homogeneous cytoplasm) and early atresic (EA: granulated cytoplasm and/or initial cumulus expansion), and by oocyte diameter: 110–125 µm, 125–135 µm, and >135 µm. They were matured in TCM-199 for 27 h at 38.5°C and 5% CO2 in air. After maturation, a sample of oocytes was denuded, and oocytes and cumulus cells, separately, were analyzed by TUNEL assay (In Situ Cell Death Detection Kit; Roche Diagnostics SL, Barcelona, Spain) to study the apoptosis. The rest of oocytes were fertilized in vitro and the presumptive zygotes were cultured for 8 days in SOF at 38.5°C, 5% CO2 and 90% N2. Results are shown in Table 1. Fisher's exact test showed a significantly higher percentage of blastocyst formation in the largest oocytes than in those with smaller diameters; moreover, the largest healthy oocytes produced a higher rate of blastocyst formation than the early atretic oocytes of the same diameter group. TUNEL assay showed that the percentage of apoptotic oocytes was lower in the largest healthy oocytes, whereas in early atresic oocytes, apoptosis was not related to oocyte size. After maturation, the percentage of apoptotic cumulus cells was low (10% of cells) in all oocyte categories. However, in the early atretic group, the percentage of apoptotic cumulus cells increased in oocytes < 125 µm. In conclusion, in prepubertal goat oocytes, the percentage of blastocysts formed depends on oocyte diameter and the percentage of apoptotic cumulus cells. Table 1.Effect of oocyte diameter and morphology on apoptosis and blastocyst development This work was supported by a grant from Generalitat de Catalunya (2006FIC 00187) and a grant from the Universitat Autonoma de Barcelona (EME-2004-25).


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


2020 ◽  
Author(s):  
Azhagiya Singam Ettayapuram Ramaprasad ◽  
Phum Tachachartvanich ◽  
Denis Fourches ◽  
Anatoly Soshilov ◽  
Jennifer C.Y. Hsieh ◽  
...  

Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive PFASs for AR using different chemical fingerprints as features. The maximum accuracy was 95.01% and Matthew’s correlation coefficient (MCC) was 0.76 respectively, based on MACCS fingerprints (MACCSFP). The combination of docking-based screening and machine learning models identified 29 PFASs that have strong potential for activity against the AR and should be considered priority chemicals for biological toxicity testing.


2020 ◽  
Vol 25 (1) ◽  
pp. 24-38
Author(s):  
Eka Patriya

Saham adalah instrumen pasar keuangan yang banyak dipilih oleh investor sebagai alternatif sumber keuangan, akan tetapi saham yang diperjual belikan di pasar keuangan sering mengalami fluktuasi harga (naik dan turun) yang tinggi. Para investor berpeluang tidak hanya mendapat keuntungan, tetapi juga dapat mengalami kerugian di masa mendatang. Salah satu indikator yang perlu diperhatikan oleh investor dalam berinvestasi saham adalah pergerakan Indeks Harga Saham Gabungan (IHSG). Tindakan dalam menganalisa IHSG merupakan hal yang penting dilakukan oleh investor dengan tujuan untuk menemukan suatu trend atau pola yang mungkin berulang dari pergerakan harga saham masa lalu, sehingga dapat digunakan untuk memprediksi pergerakan harga saham di masa mendatang. Salah satu metode yang dapat digunakan untuk memprediksi pergerakan harga saham secara akurat adalah machine learning. Pada penelitian ini dibuat sebuah model prediksi harga penutupan IHSG menggunakan algoritma Support Vector Regression (SVR) yang menghasilkan kemampuan prediksi dan generalisasi yang baik dengan nilai RMSE training dan testing sebesar 14.334 dan 20.281, serta MAPE training dan testing sebesar 0.211% dan 0.251%. Hasil penelitian ini diharapkan dapat membantu para investor dalam mengambil keputusan untuk menyusun strategi investasi saham.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


2020 ◽  
Vol 21 ◽  
Author(s):  
Sukanya Panja ◽  
Sarra Rahem ◽  
Cassandra J. Chu ◽  
Antonina Mitrofanova

Background: In recent years, the availability of high throughput technologies, establishment of large molecular patient data repositories, and advancement in computing power and storage have allowed elucidation of complex mechanisms implicated in therapeutic response in cancer patients. The breadth and depth of such data, alongside experimental noise and missing values, requires a sophisticated human-machine interaction that would allow effective learning from complex data and accurate forecasting of future outcomes, ideally embedded in the core of machine learning design. Objective: In this review, we will discuss machine learning techniques utilized for modeling of treatment response in cancer, including Random Forests, support vector machines, neural networks, and linear and logistic regression. We will overview their mathematical foundations and discuss their limitations and alternative approaches all in light of their application to therapeutic response modeling in cancer. Conclusion: We hypothesize that the increase in the number of patient profiles and potential temporal monitoring of patient data will define even more complex techniques, such as deep learning and causal analysis, as central players in therapeutic response modeling.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


Sign in / Sign up

Export Citation Format

Share Document