182 EFFECTS OF MITOCHONDRIAL ACTIVITY OF INJECTED SPERM ON EARLY DEVELOPMENT IN BOVINE INTRACYTOPLASMIC SPERM INJECTION-DERIVED EMBRYOS

2014 ◽  
Vol 26 (1) ◽  
pp. 205
Author(s):  
Y. Nagao ◽  
H. Yamamoto ◽  
B. Sarentonglaga ◽  
K. Ogata ◽  
M. Yamaguchi ◽  
...  

Intracytoplasmic sperm injection (ICSI) has become the method of choice for bovine ovum pick-up and IVF. However, there are many difficulties with the ICSI technique to obtain viable fetuses. One of the major problems associated with this technique is our lack of knowledge concerning the status of the sperm mitochondria when injected into the oocyte and its effect on embryo development. First, we examined the mitochondrial activity of sperm that had been activated by culturing with methyl-β cyclodextrin (MBCD), in ICSI and in IVF. In vitro-matured oocytes and JC1-labelled sperm were used for the ICSI and IVF. The fluorescence intensity of injected/penetrated sperm mitochondria was measured using confocal laser scanning microscopy. Then, the relative membrane potential of the mitochondria was analysed by a ratiometric method. Second, the reactive oxygen species (ROS) production and capacitation status of the sperm exhibiting normal motility and of the sperm that had been activated by culturing with MBCD were analysed. The ROS levels produced by the sperm were estimated using the luminol assay. The chlortetracycline stain was used to evaluate capacitation status of the sperm. Third, the effect of ROS produced by these sperm types upon embryogenesis following ICSI and IVF was studied. Early developing embryos were examined with a stereomicroscope for cleavage and development to the blastocyst stage after 7 days of culture. Chromosome samples stained with Giemsa solution from the blastocysts were used to analyse the chromosomal integrity. Data were analysed by t-test for Experiments 1 and 2, and ANOVA with Fisher's PLSD test for Experiment 3. The mitochondrial activity immediately after ICSI was higher than at 3 h after insemination (immediately after sperm penetration) in IVF (P < 0.05). The sperm exhibiting activation were capacitated and produced more ROS than the sperm exhibiting normal motility (P < 0.05). The rates of cleaved embryo and blastocyst after ICSI with activated sperm were the same as that in ICSI with normal motility sperm and in IVF (cleaved rate: 66.7, 71.8, and 85.0%, respectively; blastocyst rate: 24.4, 23.3, and 32.0%, respectively). However, chromosomal integrity of blastocysts derived from ICSI with activated sperm was lower than that for ICSI with normal motility sperm or for IVF (23.1, 75.0, and 63.6%, respectively; P < 0.01). In conclusion, capacitated, activated sperm induced chromosomal aberrations during early embryo development following ICSI. Conceivably, the selection of sperm exhibiting progressive motility, which is expected to be activated and to fertilize, would not always be better for early embryo development and fetal growth following ICSI due to the ROS derived from the sperm mitochondria. Injection of sperm exhibiting normal motility, or of mitochondria reduced activated sperm, could improve the quality of ICSI-derived embryos.

2018 ◽  
Vol 14 (4) ◽  
pp. 512-514
Author(s):  
Nor Shahida Abdul Rahman ◽  
Mimi Sophia Sarbandi ◽  
Wan Hafizah Wan Jusof ◽  
Zolkapli Eshak ◽  
Salina Othman ◽  
...  

The timing of the first zygotic cleavage is an accurate predictor of embryo quality. Embryos that cleaved early have higher developmental viability compared to their late counterparts. During embryonic development, cleavage is affected by cellular metabolic processes performed by mitochondria and its synergistic interaction with endoplasmic reticulum (ER). However, in depth study on differences of mitochondria and ER ultrastructures in early- cleaving (EC) versus late- cleaving (LC) embryos is limited. This study compares mitochondria and ER ultrastructures of EC versus LC embryos using Confocal Laser Scanning Microscopy (CLSM) and Transmission Electron Microscopy (TEM). Embryos were obtained from female ICR superovulated mice, 28-30 hours post hCG. Two-cell embryos were categorized as early-cleaving (EC), while zygotes with the second polar body and two pronuclei present were categorized as late-cleaving (LC). The LC embryos were cultured in vitro until the 2- cell stage. In EC embryos, mitochondria were mostly found at the perinuclear region and closely associated with dense ER. Meanwhile, mitochondria of LC embryos were distributed uniformly within the cytoplasm. Mitochondrial fluorescence intensity was significantly higher in EC versus LC [(18.7 ± 0.4) versus (14.6 ± 0.4)] x 105 pixel, (p<0.01). Development to the blastocyst stage was also significantly higher in EC compared to LC embryos (96.7% versus 60.9%) (p<0.01). Higher viability of EC embryos is attributed to the close association of their mitochondria to ER. This contributed to better mitochondrial fission, resulting in enhanced energy generating processes and preimplantation development. 


2008 ◽  
Vol 20 (1) ◽  
pp. 179
Author(s):  
M. Clemente ◽  
P. Lonergan ◽  
C. Borque ◽  
J. de La Fuente ◽  
D. Rizos

Preimplatation embryos grown in vitro are sensitive to their environment, and the conditions of culture can affect developmental potential. Progesterone (P4) is the key hormone responsible for maintenance of pregnancy in mammals, and circulating levels in the early postconception period have been associated with pregnancy success. It is not clear whether P4 acts directly or indirectly on the embryo to alter gene expression and development. The aim of this study was to assess the effect of varying levels of exogenous P4 on the development of bovine zygotes to the blastocyst stage in vitro. A preliminary study was conducted to analyze the media used for culture (stock of P4, SOF, SOF + 1 × 10–7 M P4) on Days 1 (day of culture), 4, and 7 for P4 concentration in 25-μL droplets overlain with mineral oil or 500 μL in wells with or without mineral oil. P4 was measured using an ELISA kit, prepared for human serum or plasma (DE1561 Dimeditec Diagnostics GmbH, Kiel, Germany). Inter- and intra-assay coefficients of variation were 6.63 and 6.42%, respectively, and recovery was 95%. P4 concentration on Day 1 in all media was the expected (40 ng mL–1). However, on Days 4 and 7 in media under mineral oil, the level of P4 was nearly zero (0.1 to 1.6 ng mL–1) compared with the media without mineral oil, which remained unchanged (39 to 40 ng mL–1) through the 7 days of culture. Zygotes (n = 1467) were produced in 8 replicates by in vitro oocyte maturation and fertilization, and were cultured in groups of 40 to 50 in wells of 500 μL without mineral oil in (1) SOF supplemented with 5% fetal calf serum (control–), (2) SOF with ethanol (control+), (3) SOF with P4 0.1 × 10–7 M, (4) SOF with P4 1 × 10–7 M, and (5) SOF with P4 10 × 10–7 M at 39°C, 5% CO2 and 5% O2, with maximum humidity. No significant difference was found between groups in cleavage rate or blastocyst yield on Days 6, 7, and 8 (Table 1). These results indicate that the addition of P4 to the in vitro culture medium (SOF) did not enhance the development of bovine embryos to the blastocyst stage. However, further studies on the quality of these embryos in terms of gene expression are in preparation. Table 1. Effect of P4 on bovine in vitro early embryo development


2012 ◽  
Vol 24 (1) ◽  
pp. 155 ◽  
Author(s):  
V. Maillo ◽  
U. Besenfelder ◽  
V. Havlicek ◽  
M. Garrett ◽  
A. K. Kelly ◽  
...  

The aim of this study was to examine the effect of lactation and associated metabolic profiles on the ability of the reproductive tract of postpartum dairy cows to support early embryo development. Twenty-one age-matched primiparous Holstein cows were used. Immediately after calving, half of the cows were dried off while the remainder were milked twice daily. To characterise the metabolic profile of the cows, jugular blood samples were taken twice weekly starting 15 days before calving until Day 100 postpartum. At the same time, bodyweight (BW) and body condition score (BCS) were recorded. In Experiment 1, around Day 60 postpartum, the oestrous cycles of all cows were synchronized and sixty-five 2- to 4-cell in vitro-produced embryos were endoscopically transferred on Day 2 (Day 0 = oestrus) to the oviduct ipsilateral to the corpus luteum. On Day 7, the oviduct and uterus were flushed endoscopically and the number of embryos developing to the blastocyst stage was recorded. In Experiment 2, around Day 95 postpartum, cows were re-synchronized and 15 to 20 in vitro-produced blastocysts were transferred to the uterine horn ipsilateral to the corpus luteum. On Day 14, conceptuses were recovered by flushing the reproductive tract at slaughter and were measured. Jugular blood samples were taken daily from Day 0 to 7 (Exp. 1) or 14 (Exp. 2) to measure serum concentrations of progesterone. Data were analysed by ANOVA. Concentrations of NEFA and β-HB were higher (P ≤ 0.05) and glucose, insulin and IGF-1 were lower (P ≤ 0.05) in lactating compared with dry cows. BW and BCS were significantly higher in the non-lactating cows throughout the postpartum period. Recovery rates in both experiments were similar between groups (Exp. 1: 63.9 ± 7.2 vs 65.6 ± 8.6 and Exp 2: 33.3 ± 9.6 vs 39.8 ± 9.6 for dry and milking cows, respectively). In Exp. 1, of the structures recovered, significantly more developed to the blastocyst stage in the dry than in lactating cows (49.3 ± 3.8 vs 32.6.3 ± 4.4, respectively; P ≤ 0.05). Progesterone concentrations did not differ between groups. In Exp. 2, no differences were observed in terms of conceptus dimensions on Day 14 (n = 152). Progesterone concentrations were higher in lactating cows from Day 9 to 14 (P ≤ 0.05). In conclusion, this study provides evidence that at 60 days postpartum, the reproductive tract of lactating cows is compromised in its ability to support early embryo development compared with age-matched parous non-lactating cows; however, by 95 days postpartum there was no apparent difference in conceptus development, consistent with less metabolic stress as indicated by the metabolic profile. Funded by Science Foundation Ireland (SFI/07/SRC/B1156) and the Spanish Ministry of Science and Innovation (AGL2009-11810). VM was supported by an STSM award from the COST Action FAO7O2.


2013 ◽  
Vol 25 (1) ◽  
pp. 199
Author(s):  
A. A. Gratao ◽  
A. Beck ◽  
M. Reichenbach ◽  
H. D. Reichenbach ◽  
E. Wolf ◽  
...  

A high proportion of bovine oocytes fertilized in vitro fail to develop beyond the first 4 cleavage cycles. The first mitotic division of the zygote and proper segregation of chromosomes and cytoplasmic components seems to be a particularly delicate task. Notably, zygotes cleaving with a delay of only a few hours seem to have a very low chance of developing to the blastocyst stage. But what exactly goes wrong, how often, and why? To answer such questions we have to visualize in greater detail basic structures and processes such as the sperm aster, DNA replication, migration and apposition of the 2 pronuclei, synchronous chromosome condensation and breakdown of the nuclear envelopes, assembly of the first mitotic spindle and chromosome congression, anaphase, and cytokinesis. Oocytes fertilized in vitro were fixed at different time points around the first cleavage and stained for DNA, Ser10-phosphorylated histone H3, microtubules, and microfilaments. Zygotes were imaged in toto by recording confocal serial sections at 1-µm intervals using a 40× objective (NA = 1.3). Details were recorded with high spatial sampling densities (pixel size 50 × 50 nm, z-step size of 200 nm) close to the Nyquist criterion and restored by maximum likelihood estimation deconvolution using the real point spread function. We present a series of 3-D confocal images captured at different stages of the first cleavage. The images reveal new insights into the formation, structure, and function of the first mitotic spindle and the occurrence of spindle aberrations, irregular chromosome segregation, and abnormal cytokinesis. The microscopic findings guide us to candidate proteins for localization analyses and functional studies based on 3-D fluorescence live-cell imaging of zygotes and early embryos. This work is supported by the Deutsche Forschungsgemeinschaft (DFG FOR 1041).


2021 ◽  
Vol 8 ◽  
Author(s):  
Paul Del Rio ◽  
Pavneesh Madan

Distinct miRNA populations have been detected in the spent media of in-vitro culture systems. However, profiling has been limited to media conditioned with blastocyst-stage embryos. Therefore, the aim of the study was to profile extracellular miRNAs throughout the pre-implantation period in bovine embryos. To achieve this, cumulus oocyte complexes were aspirated from ovaries, in-vitro matured, fertilized, and cultured under standard laboratory procedures to the 2-cell, 8-cell, or blastocyst stage of development. At each developmental stage, 25 μl of spent in-vitro culture media was collected, pooled to 300 μl, and processed for total RNA extraction. In-vitro culture media, which never came in contact with any embryos, were additionally processed for total RNA extraction to serve as a negative control. Following hybridization on a GeneChip miRNA 4.0 array, comparative analysis was conducted between spent media and control samples. In total, 111 miRNAs were detected in the spent media samples, with 56 miRNAs identified in blastocyst spent media, 14 miRNAs shared between 8-cell and blastocyst spent media, 7 miRNAs shared between all 3 conditions, and 6 miRNAs exclusive to 2-cell spent media. miRNA-mRNA target prediction analysis revealed that the majority of genes predicted to be regulated by the miRNAs identified in the study have roles in cellular process, metabolic process, and biological regulation. Overall, the study suggest that miRNAs can be detected in the spent media of in-vitro culture system throughout the pre-implantation period and the detected miRNAs may influence genes impacting early embryo development.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


2019 ◽  
Vol 5 (1) ◽  
pp. 85-97
Author(s):  
Nusrat Sharmin ◽  
Mohammad S. Hasan ◽  
Md. Towhidul Islam ◽  
Chengheng Pang ◽  
Fu Gu ◽  
...  

AbstractPresent work explores the relationship between the composition, dissolution rate, ion release and cytocompatibility of a series of borophosphate glasses. While, the base glass was selected to be 40mol%P2O5-16mol%CaO-24mol%MgO-20mol%Na2O, three B2O3 modified glass compositions were formulated by replacing Na2O with 1, 5 and 10 mol% B2O3. Ion release study was conducted using inductively coupled plasma atomic emission spectroscopy (ICP-AES). The thermal scans of the glasses as determined by differential scanning calorimetry (DSC) revealed an increment in the thermal properties with increasing B2O3 content in the glasses. On the other hand, the dissolution rate of the glasses decreased with increasing B2O3 content. To identify the effect of boron ion release on the cytocompatibility properties of the glasses, MG63 cells were cultured on the surface of the glass discs. The in vitro cell culture study suggested that glasses with 5 mol% B2O3 (P40B5) showed better cell proliferation and metabolic activity as compares to the glasses with 10 mol% (P40B10) or with no B2O3 (P40B0). The confocal laser scanning microscopy (CLSM) images of live/dead stained MG63 cells attached to the surface of the glasses also revealed that the number of dead cells attached to P40B5 glasses were significantly lower than both P40B0 and P40B10 glasses.


2019 ◽  
Vol 75 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Odel Soren ◽  
Ardeshir Rineh ◽  
Diogo G Silva ◽  
Yuming Cai ◽  
Robert P Howlin ◽  
...  

Abstract Objectives The cephalosporin nitric oxide (NO)-donor prodrug DEA-C3D (‘DiEthylAmin-Cephalosporin-3′-Diazeniumdiolate’) has been shown to initiate the dispersal of biofilms formed by the Pseudomonas aeruginosa laboratory strain PAO1. In this study, we investigated whether DEA-C3D disperses biofilms formed by clinical cystic fibrosis (CF) isolates of P. aeruginosa and its effect in combination with two antipseudomonal antibiotics, tobramycin and colistin, in vitro. Methods β-Lactamase-triggered release of NO from DEA-C3D was confirmed using a gas-phase chemiluminescence detector. MICs for P. aeruginosa clinical isolates were determined using the broth microdilution method. A crystal violet staining technique and confocal laser scanning microscopy were used to evaluate the effects of DEA-C3D on P. aeruginosa biofilms alone and in combination with tobramycin and colistin. Results DEA-C3D was confirmed to selectively release NO in response to contact with bacterial β-lactamase. Despite lacking direct, cephalosporin/β-lactam-based antibacterial activity, DEA-C3D was able to disperse biofilms formed by three P. aeruginosa clinical isolates. Confocal microscopy revealed that DEA-C3D in combination with tobramycin produces similar reductions in biofilm to DEA-C3D alone, whereas the combination with colistin causes near complete eradication of P. aeruginosa biofilms in vitro. Conclusions DEA-C3D is effective in dispersing biofilms formed by multiple clinical isolates of P. aeruginosa and could hold promise as a new adjunctive therapy to patients with CF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beatriz H. D. Panariello ◽  
Justin K. Kindler ◽  
Kenneth J. Spolnik ◽  
Ygal Ehrlich ◽  
George J. Eckert ◽  
...  

AbstractRoot canal disinfection is of utmost importance in the success of the treatment, thus, a novel method for achieving root canal disinfection by electromagnetic waves, creating a synergistic reaction via electric and thermal energy, was created. To study electromagnetic stimulation (EMS) for the disinfection of root canal in vitro, single rooted teeth were instrumented with a 45.05 Wave One Gold reciprocating file. Specimens were sterilized and inoculated with Enterococcus faecalis ATCC 29,212, which grew for 15 days to form an established biofilm. Samples were treated with 6% sodium hypochlorite (NaOCl), 1.5% NaOCl 1.5% NaOCl with EMS, 0.9% saline with EMS or 0.9% saline. After treatments, the colony forming units (CFU) was determined. Data was analyzed by Wilcoxon Rank Sums Test (α = 0.05). One sample per group was scored and split for confocal laser scanning microscopy imaging. There was a significant effect with the use of NaOCl with or without EMS versus 0.9% saline with or without EMS (p = 0.012 and 0.003, respectively). CFUs were lower when using 0.9% saline with EMS versus 0.9% saline alone (p = 0.002). Confocal imaging confirmed CFU findings. EMS with saline has an antibiofilm effect against E. faecalis and can potentially be applied for endodontic disinfection.


Sign in / Sign up

Export Citation Format

Share Document