195 HEAT STRESS ALTERS THE TRANSCRIPTOME OF MATURING BOVINE OOCYTES

2016 ◽  
Vol 28 (2) ◽  
pp. 228
Author(s):  
L. A. Rispoli ◽  
R. R. Payton ◽  
C. Gondro ◽  
A. M. Saxton ◽  
J. L. Edwards

Direct exposure of maturing oocytes to a physiologically relevant elevated temperature reduces embryo development after fertilisation and has been coincident with reduced de novo protein synthesis. Mechanisms responsible for heat-induced reductions in protein synthesis are unknown but may be related to alterations in the transcriptome of the maturing oocyte. To determine the extent to which this may occur, the impact of heat stress on the maternal pool of RNA in bovine oocytes was assessed using microarrays. After maturation for 24 h at 38.5°C (control) or 41°C (first 12 h only, 38.5°C thereafter; heat stress) oocytes were denuded from associated cumulus cells and lysed for RNA extraction or underwent IVF to assess developmental competence. Total RNA from oocytes was amplified by 3′-poly(A) priming or a combination of 3′-poly(A) and internal priming because oocyte transcripts may or may not have a polyadenylated tail. Amplified RNA was hybridised to GeneChip Bovine Genome Arrays (Affymetrix, Santa Clara, CA, USA; 8 oocyte pools per treatment were collected on 7 different occasions and amplified by 2 methods; n = 32 chips). Differential transcript abundance was determined using R and Bioconductor with only probes having a P < 0.01, a fold change of at least 1.3, and called present for at least half the arrays. Functional annotation of selected transcripts was performed using Gene Ontology and KEGG annotations (Bos taurus build 4.0) and DAVID (v 6.7) with significance level set at P < 0.10. Coincident with reduced blastocyst development (28.3 v. 15.2% for control v. heat stress, respectively; SEM = 3.6; P < 0.0003), heat stress altered the abundance of 159 transcripts (22 increased, 137 decreased); 130 of these were annotated. Use of DAVID demonstrated enrichment of genes important for mitochondrial function and RNA processing. Towards validating certain findings, the relative abundance of 3 mitochondrial transcripts (NDUFC2, COQ3, ATP5O) were assessed by quantitative PCR on non-amplified RNA from the oocyte samples used for the microarray study. Gene-specific primers were designed for 5′ and 3′ ends of transcripts when possible. Exposure to elevated temperature during the first 12 h of oocyte maturation reduced transcript levels of NDUFC2 at the 5′ and 3′ ends (P < 0.0001 and P = 0.003), COQ3 at the 3′ end (P = 0.02) and ATP5O at the 5′ end (P = 0.02). In conclusion, exposure of maturing cumulus-oocyte complexes to a physiologically-relevant elevated temperature altered the transcriptome in oocytes, especially certain transcripts important for mitochondrial function. This research was supported in part by USDA National Institute of Food and Agriculture, Hatch Project No. 227701, the state of Tennessee through University of Tennessee AgResearch, Department of Animal Science, and East Tennessee Research and Education Center.

2009 ◽  
Vol 21 (1) ◽  
pp. 195 ◽  
Author(s):  
R. R. Payton ◽  
L. A. Rispoli ◽  
J. L. Edwards

It is well established that exposure of cumulus–oocyte complexes (COC) to heat stress during the first 12 h of maturation reduces blastocyst development by 42 to 65%. Previous research supports the notion that some of the effects of heat stress on oocyte competence may be cumulus-mediated. To determine the extent to which this may occur, COC were matured at 38.5°C for 24 h (control) or 41°C for the first 12 h of maturation followed by 38.5°C for remaining 12 h (heat stress). A subset of COC underwent IVF with Percoll-prepared sperm and then was cultured in KSOM containing 0.5% BSA to assess developmental competence. Remaining oocytes were denuded. Cumulus cells, kept separate by treatment, were stored in lysis buffer at –80°C until RNA extraction. Total RNA from cumulus was amplified prior to hybridization to bovine Affymetrix GeneChips (Affymetrix Inc., Santa Clara, CA, USA; n = 8 pools per treatment collected on 8 different occasions; n = 16 chips). Following pre-processing using the MAS5.0 algorithm, microarray data were subjected to linear modeling and empirical Bayes analyses (Bioconductor, Limma package). False discovery rate was controlled using the Benjamini and Hochberg method, and differentially expressed genes were selected by an adjusted P-value (P < 0.05). Functional annotation of selected genes was performed using NetAffx (Affymetrix Inc.) and Database for Annotation, Visualization and Integrated Discovery (DAVID; NIAID, NIH, Bethesda, MD, USA). Heat stress of COC reduced blastocyst development (27.2 v. 16.1% for control v. heat stress, respectively; SEM = 1.6; P < 0.002). Approximately 66 and 65% of 24 000 possible genes were called present (i.e. expressed) in RNA from cumulus of competent (control) v. challenged (heat-stressed) oocytes, respectively. In cumulus from developmentally challenged COC, increased abundance of 42 genes (36 currently annotated) was noted. Use of DAVID demonstrated enrichment of genes important for electron transport and energy generation (NOS2A, MAOB, CYP11A1, HSD11B1L, LTB4DH). Further examination of gene ontology identified genes associated with mitochondrial function (SLC25A10, MAOB, CYP11A1), cell signaling (similar to JAK-3, FSHR, CYP11A1, WNT2B), cytoskeleton (ACTA1), antioxidant activity (GSTA1), and extracellular region (FMOD). In contrast, cumulus from developmentally competent COC had increased expression of 22 genes (20 currently annotated), of which 15% were related to protein binding (CAV1, MMP9, TGFB2) according to DAVID. Further analysis using gene ontology revealed genes associated with extracellular matrix formation (MMP9, MMP19, PCOLCE2) and neural tissue (METRNL). In summary, alterations in cumulus gene expression were associated with differences in developmental competence of oocytes. Additional research is necessary to examine the extent to which identified genes account for functional differences in oocyte competence. This research was supported in part by National Research Initiative Competitive Grant no. 2004-35203-14772 from the USDA Cooperative State Research, Education, and Extension Service.


2017 ◽  
Vol 52 ◽  
pp. 48-51 ◽  
Author(s):  
M Vendrell-Flotats ◽  
N Arcarons ◽  
E Barau ◽  
M López-Béjar ◽  
T Mogas

2012 ◽  
Vol 24 (1) ◽  
pp. 209 ◽  
Author(s):  
J. Ispada ◽  
R. S. Lima ◽  
P. H. B Risolia ◽  
M. E. O. A. Assumpção ◽  
J. A. Visintin ◽  
...  

The series of events associated with oocyte maturation are susceptible to disruption by elevated temperature. These events are regulated by a variety of growth factors, such as insulin-like growth factor-1 (IGF-1). Exposure of bovine oocytes to heat shock compromises oocyte competence and triggers apoptosis. It has been shown that cellular stresses often alter mitochondrial function and activate the mitochondrial apoptotic cascade. Therefore, the objective of this study was to determine the effect of heat shock on bovine oocyte mitochondrial activity and the role of IGF-1 in this context. Slaughterhouse derived cumulus–oocyte complexes (COC) were subjected to control (38.5°C for 22 h) and heat shock (41°C for 14 h, followed by 38.5°C for 8 h) treatments in the presence of 0 or 100 ng mL–1 of IGF-1 during in vitro maturation (IVM). After 22 h, IVM COC were mechanically denuded and subjected to MitoTracker Red CMX-Ros assay (Invitrogen M-7512) to localize and quantify active mitochondria. Denuded oocytes were incubated in TCM-199-HEPES containing 10 μg mL–1 of polyvinyl alcohol and 50 nM MitoTracker at 37°C for 15 min. Oocytes were evaluated under fluorescence microscope and digital images were obtained and stored as TIFF files. Mitochondrial activity from each oocyte was quantified using the software Image J 1.43. This experiment was replicated 6 times using 97 to 204 COC/treatment. Data were analyzed by least-squares analysis of variance using the general linear model procedure of SAS. In the absence of IGF-1, heat shock reduced (P < 0.001) mitochondrial activity from 64.31 ± 1.91 to 56.74 ± 1.26 arbitrary units for control and heat shock groups, respectively. Addition of IGF-1 to maturation medium did not affect mitochondrial activity in the control group (66.25 ± 1.56). However, IGF-1 improved (temperature × IGF-1; P < 0.001) mitochondrial activity of bovine oocytes subjected to heat shock (70.32 ± 1.32). In conclusion, heat shock reduced bovine oocyte mitochondrial activity, suggesting activation of mitochondrial apoptotic cascade. Moreover, IGF-1 exerted a thermoprotective role, reducing the mitochondrial damage caused by elevated temperature.


Zygote ◽  
2011 ◽  
Vol 20 (3) ◽  
pp. 249-259 ◽  
Author(s):  
Hisashi Nabenishi ◽  
Hiroshi Ohta ◽  
Toshihumi Nishimoto ◽  
Tetsuo Morita ◽  
Koji Ashizawa ◽  
...  

SummaryIn the present study, we investigated the effects of various concentrations of cysteine (0.0, 0.6, 1.2 and 1.8 mM) added to the maturation medium on nuclear maturation and subsequent embryonic development of bovine oocytes exposed to heat stress (HS: set at 39.5 °C for 5 h, 40.0 °C for 5 h, 40.5 °C for 6 h, and 40.0 °C for 4 h versus 38.5 °C for 20 h as the control group). This regime mimicked the circadian rhythm of the vaginal temperature of lactating dairy cows during the summer season in southwestern Japan. Moreover, we also evaluated the oocyte's reactive oxygen species (ROS) and glutathione (GSH) levels and the apoptosis levels of the oocytes and cumulus cells in the presence or absence of 1.2 mM cysteine. As a result, HS in the without-cysteine group significantly suppressed (p < 0.05) both the nuclear maturation rate up to the metaphase (M)II stage and the blastocyst formation rate compared with that of the control group. In addition, this group showed significantly higher (p < 0.05) ROS levels and significantly lower (p < 0.05) GSH levels than those of the control group. Moreover, the level of TdT-mediated dUTP nick end labelling (TUNEL)-positive cumulus cells in the HS without-cysteine group was significantly higher (p < 0.05) than that of the control group. However, the addition of 1.2 mM cysteine to the maturation medium restored not only the nuclear maturation, blastocyst formation rates and GSH contents, but also increased the ROS and TUNEL-positive levels of the cumulus cells, but not oocytes, to that of the control group. These results indicate that the addition of 1.2 mM cysteine during in vitro maturation (IVM) may alleviate the influence of heat stress for oocyte developmental competence by increasing GSH content and inhibiting the production of oocyte ROS followed by apoptosis of cumulus cells.


Zygote ◽  
2001 ◽  
Vol 9 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Sheldon J. Kawarsky ◽  
W. Allan King

Effects of elevated in vitro temperature on in vitro produced early bovine embryos were analysed in order to determine its impact on the expression of heat shock protein 70 (hsp70). In vitro matured bovine oocytes, 2-cell and 8-cell embryos, and day 9 hatched blastocysts subjected to control and elevated temperature conditions were analysed by semiquantitative reverse transcription polymerase chain reaction methods for hsp70 mRNA expression. Results revealed the expression of hsp70 mRNA under control conditions and that early embryos can respond to heat stress by transcribing hsp70 mRNA. Confocal laser scanning microscopy used to localise the hsp70 protein in oocytes and embryos revealed that the distribution of hsp70 in the ooplasm of immature and mature oocytes is unaffected by exposure to elevated temperatures and that this protein was closely associated with the meiotic spindle, indicating its possible role in stabilising this structure. In 8-cell embryos derived under control conditions, hsp70 was evenly distributed in the cytoplasm but appeared as aggregates in some embryos exposed to elevated temperature. In heat-stressed hatched blastocysts, a more even distribution was noted following heat stress relative to corresponding controls, indicating their competence to respond to elevated temperature.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 72
Author(s):  
Marija Viljevac Vuletić ◽  
Ines Mihaljević ◽  
Vesna Tomaš ◽  
Daniela Horvat ◽  
Zvonimir Zdunić ◽  
...  

The aim of this study was to evaluate physiological responses to short-term heat stress in the leaves of traditional (Bistrica) and modern (Toptaste) plum cultivars. In this study, detached plum leaves were incubated at 25 °C (control) and 40 °C (stress). After 1 h of exposure to heat (40 °C), chlorophyll a fluorescence transients were measured, and several biochemical parameters were analyzed. Elevated temperature caused heat stress in both plum cultivars, seen as a decrease in water content (WT), but in the leaves of the cultivar Bistrica, an accumulation of proline and phenols, as well as an accumulation of photosynthetic pigments, suggest the activation of a significant response to unfavorable conditions. Conversely, in the leaves of Toptaste, a significant accumulation of malondialdehyde (MDA) and an activation of guaiacol peroxidase (GPOD), all together with a decreased soluble proteins content, indicate an inadequate response to maintaining homeostasis in the leaf metabolism. The impact of an elevated temperature on photosynthesis was significant in both plum cultivars as reflected in the decrease in performance indexes (PIABS and PItotal) and the maximum quantum yield of PSII (Fv/Fm), with significantly pronounced changes found in Toptaste. Unlike the traditional plum cultivar, Bistrica, in the modern cultivar, Toptaste, short-term heat stress increased the minimal fluorescence (F0) and absorption (ABS/RC), as well as Chl b in total chlorophylls. Additionally, the inactivation of RCs (RC/ABS) suggests that excitation energy was not trapped efficiently in the electron chain transport, which resulted in stronger dissipation (DI0/RC) and the formation of ROSs. Considering all presented results, it can be presumed that the traditional cultivar Bistrica has better tolerance to heat stress than the modern cultivar Toptaste. The cultivar, Bistrica, can be used as a basis in further plum breeding programs, as a source of tolerance for high temperature stress.


2018 ◽  
Vol 30 (1) ◽  
pp. 159 ◽  
Author(s):  
N. Arcarons ◽  
M. Vendrell ◽  
M. Yeste ◽  
M. E. Mercadé ◽  
M. López-Béjar ◽  
...  

Previous reports have demonstrated the beneficial effect of antifreeze glycoprotein supplementation during oocyte vitrification on preventing ice crystal formation and thus enhancing developmental competence after vitrification-warming. Pseudomonas sp. ID1, a bacterium isolated from marine sediment from Antarctica, produces an exopolysaccharide, M1 EPS, as a cold adaptation mechanism. Despite numerous studies on structural and morphological damages induced by cryopreservation in oocytes, few studies have focused on the impact of vitrification on the expression pattern of genes during early embryo development. In the present study, the expression patterns of 6 genes (BAX, BCL2-like 1, DNMT3A, UBE2A, SCLC2A3, and HDAC1) were investigated in Day 8 blastocysts resulting from in vitro-matured oocytes vitrified/warmed in media supplemented with various concentrations of M1 EPS. After 21 h of IVM, 1,062 oocytes were vitrified/warmed in media supplemented with 0, 0.001, 0.01, 0.1, and 1 mg mL−1 M1 EPS. At 24 h of IVM, oocytes were in vitro fertilized and in vitro cultured and the resulting blastocysts were harvested at Day 8 for RNA extraction and qPCR analysis. Fresh, non-vitrified oocytes were used as a control. Analysis of gene expression was performed through Kruskall-Wallis test and followed by Mann-Whitney test, and the level of significance was set at P ≤ 0.05. No significant differences were detected in relative mRNA abundance for SLC2A3, UBE2A, or HDAC-1 between blastocysts derived from vitrified oocytes, regardless of M1 EPS treatment. Expression of DNMT3A was significantly higher in embryos obtained from oocytes vitrified and warmed with 0.1 mg mL−1 M1 EPS compared with other treatment groups. However, no differences in DNMT3A expression were observed when the other vitrified groups were compared. The relative abundance of BAX transcript in embryos from oocytes vitrified in media supplemented with 0.1 mg mL−1 M1 EPS was higher than that in 0 or 0.001 mg mL−1 groups. Embryos from 0.01 and 0.1 mg mL−1 groups showed higher BCL2-like 1 mRNA abundance than those from the 0, 0.001, and 1 mg mL−1 groups. Whereas blastocysts from oocytes vitrified with 0.01 mg mL−1 M1 EPS exhibited the lowest BAX:BCL2-like 1 ratio, no significant differences in BAX:BCL2-like 1 ratio were observed between the other treatments. The significantly lower BAX:BCL2 ratio observed in blastocysts obtained from oocytes vitrified with 0.01 mg mL−1 M1 EPS could be indicative for a better embryo quality. Although optimizing the use of M1 EPS may benefit oocyte cryopreservation protocols, further research is required to clarify the exact mechanism through which it exerts its protective role. This study was supported by the Spanish Ministry of Science and Innovation (Project AGL2016-79802-P and grant CTQ2014-59632-R).


2021 ◽  
Vol 33 (2) ◽  
pp. 153
Author(s):  
M. T. Moura ◽  
C. A. I. Carvalho ◽  
F. R. O. Barros ◽  
F. Mossa ◽  
D. Bebbere ◽  
...  

Heat stress (HS) is characterised by an elevation in body temperature that ultimately undermines organism physiology. Most livestock production occurs in tropical regions under potential HS conditions that diminish productive and reproductive potential. Despite extensive evidence of HS-mediated effects in cell function, stage-specific detrimental effects of HS during oogenesis remain elusive. Mouse models represent an attractive alternative for faster interrogation of stage-specific phenomena during oogenesis. Therefore, the aim of the study was to determine the effects of HS exposure during the major window of female mice germ-cell DNA methylation programming. CD1/Swiss female mice with litters (F0 progeny) at postnatal Day 10 (P10) were randomly allocated to HS (35°C/12-h light; 21°C/12-h dark) or control (CTL: 21°C/24h) for 11 days. The F0 progeny were weaned at P21 and superovulated after reaching puberty at P35. F0 females were superovulated by intraperitoneal injections with 5.0IU of equine chorionic gonadotrophin (PMSG) followed by 5.0IU of human chorionic gonadotrophin (hCG) within a 48-h interval. Pre-implantation embryos were harvested at Day E3.5 in M2 medium under a stereomicroscope. One F0 female per litter was randomly mated to control mice when it reached 6 weeks of age. Data were subjected to least-squares analysis of variance using the General Linear Models procedure of SAS (SAS Institute Inc.). The experiment was replicated twice (CTL: n=4 F0 females and HS: n=4 F0 females). Preliminary results are given as LSM±s.e.m. There was no effect of heat stress on the number of embryos collected per female (CTL: 9.75±4.87 vs. HS: 11.25±4.81) or the percentage of non-viable embryos (CTL: 25.0±0.23% vs. HS: 42.5±0.25%). However, heat stress tended (P=0.07) to reduce the percentage of embryos that reached the morula stage from 63.5±0.08% for CTL to 35.1±0.09% for HS. The percentage of blastocysts collected (CTL: 11.45±0.18% vs. HS: 22.32±0.19%) and litter size of F0 females (CTL: 7.47±1.76 vs. HS: 7.66±1.47) was not affected by treatment. In conclusion, exposure of female mice to 11-day HS during the major wave of de novo DNA methylation during oocyte growth tended to reduce subsequent pre-implantation embryonic development, although it did not affect full-term development after natural mating.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 511c-511 ◽  
Author(s):  
Michael Wisniewski ◽  
Jörg Sauter ◽  
Valerie Stepien ◽  
Les Fuchigami

Sublethal heat stress has been shown to decrease or eliminate deep supercooling of flower buds in woody plants and to release plants from endodormancy. Experiments were conducted to characterize the effect of heat stress on endodormancy and ecodormancy in peach (cv Loring) and two hybrid poplars. Protein synthesis (de novo) and patterns of protein expression were also monitored. In order to determine optimum treatment temperatures, shoots, collected September-March, were exposed to a range of temperatures (35-60 C) under wet or dry conditions for 1-6 h. Shoots were then placed in the greenhouse and cumulative budbreak was monitored over 4 weeks. Samples of bud and bark tissues were collected during and up to 72 h after heat treatment for SDS-PAGE analysis. Data indicate: 1) twigs must be immersed in water for the heat treatments to be effective; 2) heat treatments resulted in a release from endodormancy and a decrease in thermal units needed for budbreak during ecodormancy; 3) 40 C for 2-4 h was optimum in fall and late winter whereas 45 C was the optimum temperature to induce budbreak in midwinter; 4) optimum temperature for peach floral buds (37.5 C/2h) was lower than for vegetative buds (40 C/4h), and 5) heat treatments also decreased cold hardiness. Protein synthesis decreased significantly following heat treatment but was significantly greater than controls (room temp) 24-48 h after heat treatment.


2007 ◽  
Vol 19 (1) ◽  
pp. 248 ◽  
Author(s):  
F. Carter ◽  
T. Fair ◽  
S. Park ◽  
M. Wade ◽  
A. C. O. Evans ◽  
...  

Previous studies by our group have demonstrated that oocyte maturation is a crucial event in the determination of subsequent developmental competence. The objective of the current study was to characterize changes in gene expression profiles of bovine oocytes during meiotic maturation. To this end, 5 replicate pools of 200 bovine cumulus–oocyte complexes (COCs)were collected from the ovaries of slaughtered heifers. Upon recovery, 100 COCs from each replicatewere immediately denuded, and the oocytes were snap frozen in liquid nitrogen. The remaining 100 COCs were matured in vitro in TCM-199 supplemented with 10% (v/v) fetal calf serum and 10 ngmL-1 epidermal growth factor for 24 h at 39�C under an atmosphere of 5% CO2 in air with maximum humidity. Following maturation, the remaining COCs were denuded and snap frozen. Total RNA was isolated (mean total RNA content 106.08�38.87 ng per 100 oocytes) and subjected to 2 rounds of amplification incorporating biotin-labeled nucleotides during the second in vitro transcription reaction (mean total RNA content 155.15�51.14 �g per 100 oocytes post-amplification). The resulting labeled antisense RNA was hybridized to a GeneChip Bovine Genome Arrays (Affymetrix, Inc., Santa Clara, CA, USA) (10 chips, 5 replicates each of immature and mature oocytes, n=100 oocytes/chip). Expression data were analysed using Genespring software (Agilent Technologies, Palo Alto, CA, USA), and data were normalized to the median. Overall, 54.9�1.3% and 53.3�3.3% of the 24 178 probe sets representing 23 000 transcripts spotted on the arrays were expressed in immature and in vitro-matured oocytes, respectively. Across the 5 array comparisons, 52 genes were consistently exclusively present in immature oocytes, whereas 16 genes were exclusively present in mature oocytes. A further 821 genes were found to be differentially expressed (≥2-fold) between the 2 groups (P &lt;0.05), of which 209 were up-regulated and 612 were down-regulated in the in vitro-matured oocytes compared with their immature counterparts. The differentially expressed transcripts were classified according to their gene ontology (http://benzer.ubic.ca/ermineJ). The existing Affymetrix annotation was updated by blasting the sequences against bovine, human, and murine databases (≥90% homology; increasing molecular function annotation from 14% to 42%). In terms of olecular function, the majority of these genes were associated with protein or nucleic acid binding (&gt;42%), catalytic activity (24%), signal transduction (7%), transporter activity (5%), and structural molecule activity (5%). In conclusion, we have stablished the molecular transcriptome blueprint of immature and in vitro-matured bovine oocytes. Through comparisons with in vivo-matured oocytes, this resource will be invaluable in determining genes that are involved in controlling the developmental competence of oocytes. This research was funded by the Science Foundation Ireland (02/IN1/B78).


Sign in / Sign up

Export Citation Format

Share Document