39 THE EFFECTS OF RESVERATROL DURING IN VITRO MATURATION ON THE DEVELOPMENTAL COMPETENCE OF PORCINE OOCYTES VITRIFIED AT THE IMMATURE STAGE

2017 ◽  
Vol 29 (1) ◽  
pp. 127 ◽  
Author(s):  
E. C. S. Santos ◽  
T. Somfai ◽  
R. Appeltant ◽  
T. Q. Dang-Nguyen ◽  
H. Kaneko ◽  
...  

Previously, live offspring have been produced from porcine oocytes vitrified at the immature stage (Somfai et al. 2014 PLoS One 9, e97731); however, their embryo developmental rates remain low. The aim of our current research was to test the effects of resveratrol, an antioxidant and anti-apoptotic agent on the developmental competence of immature vitrified oocytes during in vitro maturation (IVM) after warming. Follicular porcine cumulus-oocyte complexes (COC) were vitrified on Cryotop® sheets (Kitazato Corp. Shizuoka, Japan) using the cryoprotectant treatment and warming method of Somfai et al. (2015 J. Reprod. Dev. 61, 571–579). After warming, the oocytes were subjected to IVM for 46 h in a chemically defined porcine oocyte medium (POM) enriched with 10 ng mL−1 epidermal growth factor, 10 IU mL−1 eCG, and 10 IU mL−1 hCG. During the first 22 h of IVM, the medium was supplemented with 1 mM dibutyryl cAMP. The following 24 h of IVM was performed in POM without dibutyryl cAMP. Vitrified/warmed COC (vitrified group) and freshly collected COC (control group) were matured either in the absence or presence of 2 µM resveratrol (RES− and RES+, respectively) throughout the entire IVM. At the end of IVM, oocytes were denuded and their survival was evaluated. Then, those with 1 polar body (PB1+) were selected for parthenogenetic activation (Day 0). Activated oocytes were cultured for 7 days in PZM-3. Survival, nuclear maturation, cleavage, and blastocyst rates were assessed. The experiment was replicated 5 times. Results were analysed by one-way ANOVA and Tukey’s multiple comparison test. Vitrification reduced the percentage of live oocytes after IVM both in RES− and RES+ groups in a similar manner (47.9 and 51.8%, respectively) compared with control RES− and RES+ groups (99.4 and 100%, respectively; P < 0.05) There was no statistical difference among groups in the percentage of PB1+ oocytes (ranging between 76.1 and 90.2%). On Day 2, the cleavage rate in vitrified RES− group was lower than those in control RES− and RES+ groups (55.9 v. 78.5% and 79.2%, respectively) whereas the vitrified RES+ group did not differ from the others (72.1%). The blastocyst developmental rate calculated from total cultured oocytes on Day 7 in vitrified RES+ group was significantly higher (P < 0.05) than that in the vitrified RES− group (26.2% v. 6.9%, respectively) and did not differ significantly from those of control RES− and RES+ groups (32.1 and 36.0%, respectively). Blastocyst rates in control RES− and RES+ groups were significantly higher (P < 0.05) than that in vitrified RES− group but did not differ from one another. In conclusion, supplementation of IVM medium with resveratrol improved the developmental competence of vitrified, but not freshly collected oocytes. This work was supported by JSPS KAKENHI (Grant Number: 26870839) and JST/JICA SATREPS. E.C.S. Santos was supported by a CNPq-Brasil fellowship.

2020 ◽  
Vol 10 (4) ◽  
pp. 658-664
Author(s):  
G Ashour ◽  
Ashraf El-Sayed ◽  
M Khalifa ◽  
Nasser Ghanem

The deleterious effect of heat stress on cumulus-oocytes complexes (COCs) competence is well recognized in different livestock species. Therefore, the present study aimed to investigate the effect of physiologically relevant heat stress on the developmental competence of camel COCs during in vitro maturation (IVM). A total of 1548 COCs were divided into six groups in this study. The groups were named K1 and K2 representing good and low-quality COCs incubated at 38.5oC for 30 hours. While K3 and k4 represent good and low-quality COCs exposed to 41oC for the first 6 hours of IVM. Finally, K5 and k6 represent the groups of good and low-quality COCs exposed to 42oC for the first 6 hours of IVM. After exposure of COCs to heat stress at 41°C and 42°C during the first 6 hours of in vitro maturation, the COCs were incubated at 38.5°C for 24 hours of IVM. The in vitro matured COCs were activated to cleave using ethanol followed by 4 mM 6-DMAP and developed embryos were cultured in vitro for 7 days post parthenogenetic activation. The results of this study indicated that heat stress at 42oC significantly decreased the Pb (polar body) extrusion rate in K4 and K6, compared to other groups. Additionally, the embryo cleavage rate was significantly lower for good and low-quality oocytes exposed to heat stress (K2, K3, K4, K5, and K6), compared to good quality COCs of the control group (K1). The cleavage rate was lower for low quality (K2; 63 ± 1.28) than good quality COCs (K1; 53 ± 1.85). The percentages of oocytes that developed to the blastocyst stage were lower for K2, K3, K4, K5, and K6 than K1. Moreover, the blastocyst rate was lower for K2 (9 ± 0.22) than K1 (15 ± 0.22). The results of this study indicated that exposure of camel oocytes to heat stress for 6 hours during in vitro maturation severely reduced extrusion of polar body, cleavage, and blastocyst rates. The low-quality camel COCs were reduced developmental capacity than good quality oocytes.


Zygote ◽  
2020 ◽  
pp. 1-6
Author(s):  
Ji-Eun Park ◽  
Sang-Hee Lee ◽  
Yong Hwangbo ◽  
Choon-Keun Park

Summary The aim of the present study was to investigate the effects of porcine follicular fluid (pFF) from large-sized (LFF; >8 mm in diameter) and medium-sized (MFF; 3–6 mm in diameter) follicles on the maturation and developmental competence of porcine oocytes. Cumulus–oocyte complexes (COCs) were collected from follicles 3–6 mm in diameter. The collected COCs were incubated for 22 h with LFF or MFF (in vitro maturation (IVM)-I stage) and were incubated subsequently for 22 h with LFF or MFF (IVM-II stage). Cumulus expansion was confirmed after the IVM-I stage and nuclear maturation was evaluated after the IVM-II stage. Intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured and embryonic development was evaluated. Relative cumulus expansion and GSH levels were higher in the LFF group compared with in the MFF group after the IVM-I stage (P < 0.05). After the IVM-II stage, the numbers of oocytes in metaphase-II were increased in the LFF group and GSH content was higher in all of the LFF treatment groups compared with in the MFF treatment groups during both IVM stages (P < 0.05). ROS levels were reduced by LFF treatment regardless of IVM stage (P < 0.05). Blastocyst formation and the total numbers of cells in blastocysts were increased in all LFF treatment groups compared with the control group (P < 0.05). These results suggested that pFF from large follicles at the IVM stage could improve nucleic and cytoplasmic maturation status and further embryonic development through reducing ROS levels and enhancing responsiveness to gonadotropins.


2007 ◽  
Vol 19 (1) ◽  
pp. 184 ◽  
Author(s):  
T. Somfai ◽  
M. Ozawa ◽  
J. Noguchi ◽  
H. Kaneko ◽  
K. Ohnuma ◽  
...  

The present study investigated the ability of in vitro-matured (IVM) porcine oocytes to be fertilized in vitro after vitrification. Oocytes matured in vitro for 46 h according to Kikuchi et al. (2002 Biol. Reprod. 66, 1033–1041) were cryopreserved by solid surface vitrification (SSV; Dinnyes et al. 2000 Biol. Reprod. 63, 513–518) or subjected to the steps of SSV without cooling (toxicity control, TC). Oocyte viability was assessed 2 h after treatment by morphology and fluorescein diacetate staining. Live oocytes were in vitro-fertilized (IVF) and cultured (IVC) for 6 days according to Kikuchi et al. (2002). Fertilization and pronuclear development of oocytes were assessed 10 h after IVF by aceto-orcein staining. Cleavage and blastocyst rates were recorded during IVC. Glutathione (GSH) and hydrogen peroxide levels in oocytes were analyzed by DTNB-glutathione disulfide reductase recycling assay and 20,70-dichlorofluorescein fluorescence assay, respectively. Data were analyzed by ANOVA and paired t-test. The rate of live oocytes after SSV was lower compared to the control and the TC groups (54.4%, 100%, and 100%, respectively; P &lt; 0.05). Sperm penetration rates of SSV oocytes were lower than those of the control group (51.9% and 67.8%, respectively; P &lt; 0.05). Significantly fewer penetrated oocytes in the SSV group formed male pronuclei than those in the control and the TC groups (66.7%, 96.5%, and 98.5%, respectively; P &lt; 0.05). There were no differences in second polar body extrusion and monospermy rates between the treatment groups. The cleavage rate of SSV oocytes was significantly lower than that of the control and the TC groups (13.3%, 46.6%, and 47.7%, respectively; P &lt; 0.05). Blastocyst rates of control and TC oocytes were similar (20.7% and 23.6%, respectively), whereas only a single embryo developed to the blastocyst stage in the SSV group. GSH content of SSV oocytes was significantly lower than that of the control oocytes (7.3 pM and 10.5 pM, respectively), whereas the peroxide level was higher in SSV oocytes than in the control oocytes (59.0 and 50.5 FIU, respectively; P &lt; 0.05). Our results reveal a cryopreservation-related drop of intracellular GSH level in oocytes, which may cause their decreased ability to form a male pronucleus and their increased sensitivity to oxidative stress. These factors might contribute to the low developmental competence of vitrified oocytes. This work was supported by a grant-in-aid for the Japanese Society for the Promotion of Science Postdoctoral Fellowship for Foreign Researchers (P05648) and the Bilateral Scientific and Technological Collaboration Grant between Hungary and Japan (TET, no. JAP-11/02).


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 741
Author(s):  
Dongjin Oh ◽  
Joohyeong Lee ◽  
Eunhye Kim ◽  
Seon-Ung Hwang ◽  
Junchul-David Yoon ◽  
...  

Interleukin-7 (IL-7) is a cytokine essential for cell development, proliferation and survival. However, its role in oocyte maturation is largely unknown. To investigate the effects of IL-7 on the in vitro maturation (IVM) of porcine oocytes, we analyzed nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, and subsequent embryonic developmental competence after parthenogenetic activation (PA) under several concentrations of IL-7. After IVM, IL-7 treated groups showed significantly higher nuclear maturation and significantly decreased intracellular ROS levels compared with the control group. All IL-7 treatment groups exhibited significantly increased intracellular GSH levels compared with the control group. All oocytes matured with IL-7 treatment during IVM exhibited significantly higher cleavage and blastocyst formation rates after PA than the non-treatment group. Furthermore, significantly higher mRNA expression levels of developmental-related genes (PCNA, Filia, and NPM2) and antioxidant-related genes (GSR and PRDX1) were observed in the IL-7-supplemented oocytes than in the control group. IL-7-supplemented cumulus cells showed significantly higher mRNA expression of the anti-apoptotic gene BCL2L1 and mitochondria-related genes (TFAM and NOX4), and lower transcript levels of the apoptosis related-gene, Caspase3, than the control group. Collectively, the present study suggests that IL-7 supplementation during porcine IVM improves oocyte maturation and the developmental potential of porcine embryos after PA.


2002 ◽  
Vol 45 (6) ◽  
pp. 547-556
Author(s):  
N. R. Mtango ◽  
M. D. Varisanga ◽  
D. Y. Juan ◽  
P. Wongrisekeao ◽  
T. Suzuki

Abstract. This study was designed 1) to determine the effectiveness of two in vitro maturation (IVM) media (tissue culture medium [TCM] and modified synthetic oviduct fluid supplemented with amino acids [mSOFaa]), 2) to compare the effects of two in vitro fertilization (IVF) media (modified Tris-buffered medium [mTBM] and mSOFaa) on the developmental competence of pig oocytes, and 3) to test the activation ability of IVM pig oocytes matured in TCM or mSOFaa, electroactivated and cultured in mSOFaa. The nuclear maturation rates were similar between IVM media (91.0 % vs. 89.0 %). A similar result was obtained when the activation rates were 54.2 % in TCM and 56.0 % in mSOFaa, and the blastocyst rates were 7.9 % and 6.1 %, respectively. There was no significant difference between mSOFaa and mTBM in the percentage of embryos with two pronuclei 33.2 % vs. 13.8 % or polypronuclei 5.3 % vs. 13.4 %. The cleavage rate was the same in both media. The medium mSOFaa gave a significantly higher (P< 0.05) blastocyst rate than mTBM (12.7 % vs. 3.9 %). We concluded that mSOFaa can enhance in vitro maturation, fertilization and culture of pig oocytes.


2008 ◽  
Vol 20 (1) ◽  
pp. 145
Author(s):  
H. J. Kim ◽  
S. R. Cho ◽  
C. Y. Choe ◽  
S. H. Choi ◽  
D. S. Son ◽  
...  

The objective of this study was to examine the selection effects of in vitro matured porcine follicular oocytes with polar body extrusion and early cleavage as a non-invasive marker to know the developmental competence in advance. Porcine oocytes matured for 48 h and then examined for polar body extrusion. The examined oocytes were matured for an additional 16–18 h, activated with 7% ethanol, and cultured in 5 µg mL–1 cytochalasin B for 5 h for diploid formation. The treated oocytes were examined for cleavage after 48 h and continued culturing for 5 days. Each treatment was replicated by 3–4 times. Oocytes of 21.9% (70/320) were discarded in morphological selection, and 32.1% (167/520) oocytes were discarded by failure of first polar body extrusion. The selected oocytes were matured and activated, and after 48 h, the cleavage rate was examined. In morphologically selected oocytes, 15.8% (30/190) were not cleaved, 52.6% (100/190) were normally cleaved (consisted of 2–7 cells), and 31.6% (60/190) were hyper-cleaved (consisted of 8 cells or more) at 48 h after activation. However, in the first polar body extruded oocytes, 7.1% (18/253) were not cleaved, 73.1% (185/253) were normally cleaved, and 19.8% (50/253) were hyper-cleaved. From the morphologically selected oocytes, 16.7% (10/60) were developed up to blastocyst stage from those in which cleavage selection was not performed and 31.7% (19/60) from those in which cleavage selection was performed. From the polar body extruded oocytes, 39.0% (39/100) were developed up to blastocyst stage from those in which cleavage selection was not performed and 49.0% (49/100) from those in which cleavage selection was performed. Cleavage was examined within 12 h interval after activation (0 = time of activation) up to 48 h. At 0–12, 12–24, 24–36, and 36–48 h intervals, 4.1% (9/220), 68.6% (151/220), 19.1% (42/220), and 2.3% (5/220) oocytes were cleaved, respectively, and 5.9% (13/220) oocytes were not cleaved at 48 h after activation. The cleaved embryos in each interval were cultured and developed up to blastocyst with 0 (0/9), 39.1 (59/151), 9.5 (4/42), and 0% (0/5), respectively. This result suggests that the polar body extruded and cleaved at 12–36 h embryo has higher developmental potential than the others.


Author(s):  
Mehdi Azari ◽  
Mojtaba Kafi ◽  
Anise Asaadi ◽  
Zohreh Pakniat ◽  
Beheshteh Abouhamzeh

Background: There is no sufficient information on the impact of bovine ampullary oviductal epithelial cells (BAOECs) on in vitro oocyte maturation competence and gene expression. Objective: This study aimed to examine the oocyte developmental competence following co-culturing with a monolayer of fresh and frozen-thawed ampullary cells. Materials and Methods: Bovine cumulus-oocyte complexes (COCs) were distributed into three groups: control group; where in COCs were cultured in cell-free media for 24 hr and FML and FTML groups in which the COCs were cultured in maturation media for 18 hr and then transferred into a media containing fresh and frozen-thawed BAOECs monolayer, respectively (BAOECs were extracted from the oviducts of slaughtered cattle and were then cultured freshly or frozen-thawed) for a further 6 hr. After 24 hr, the expanded COCs were evaluated for nuclear maturation, fertilization rate, and gene expression (GDF9, StAR, CASP3, and FSHr). Results: Nuclear maturation rate in the FTML group was significantly higher than the control group (p = 0.02). The fertilization rate of FTML group was significantly higher than the control and FML groups (p = 0.05 and p = 0.03, respectively). In terms of gene expression, GDF9 were upregulated in the presence of the BAOECs during the last 6 hr of the in vitro maturation (p < 0.001). Furthermore, the expression of the StAR gene in the FTML group was higher than the other groups (p = 0.02). Conclusion: Ampullary cells co-culturing (especially frozen-thawed cells) for in vitro maturation of bovine oocytes yields encourages the results and demonstrates the beneficial effect of co-culture on gene expression and developmental competence. Key words: Ampulla, Bovine, Fertilization, Gene expression, IVM.


2007 ◽  
Vol 19 (8) ◽  
pp. 947 ◽  
Author(s):  
Jennifer M. Kelly ◽  
David O. Kleemann ◽  
W. M. Chis Maxwell ◽  
Simon K. Walker

Two experiments were conducted in Merino lambs to examine the effects of gonadotrophin-releasing hormone (GnRH) treatment on the developmental competence of oocytes collected after pretreatment with follicle stimulating hormone (FSH). The first experiment examined the effects of six GnRH treatment times (control and GnRH administered 2, 4, 6, 8 and 10 h before oocyte collection) and four in vitro maturation (IVM) periods (18, 20, 22, 24 h) on the rate of oocyte nuclear maturation. The second experiment examined the effect of five GnRH treatment times (control and GnRH administered 2, 4, 6 and 8 h before oocyte collection) and three IVM periods (20, 22, 24 h) on the development of oocytes and embryos after in vitro maturation, fertilisation and culture. In Experiment 1, GnRH treatment did not influence the mean number of cumulus-oocyte-complexes (COCs) collected or COC morphology at the time of collection. However, treatment changed (P < 0.01) the distribution of follicle size and this was primarily due to a marked reduction in the number of follicles with diameters <2 mm. In addition, GnRH treatment at 6 and 8 h increased (P < 0.01) the proportion of oocytes that developed to Metaphase II (MII) (63.2 and 72.6%, respectively) compared with other treatment times (range 52.9–59.9%). Nuclear maturation was influenced by a significant (P < 0.05) interaction between GnRH treatment and IVM period due to a disproportionately greater number of oocytes at the germinal vesicle breakdown (GVBD) stage for the 2 and 4 h GnRH treatments compared with other treatments. In Experiment 2, cleavage rate (range 63.5–85.9%) was highest when GnRH was administered 8 h before collection but the percentage of cleaved oocytes that developed into blastocysts (range 10.0–35.0%) was significantly (P < 0.05) lower for the 6 and 8 h GnRH treatments compared with the control and the 2 h GnRH treatment. These results demonstrate that GnRH treatment before oocyte collection can improve nuclear maturation and cleavage rates in lamb oocytes but that these improvements are not reflected in improved rates of blastocyst development. It is speculated that this discrepancy may result from GnRH treatment either adversely affecting cytoplasmic maturation or inducing asynchrony between the maturation of the nuclear and cytoplasmic components of the oocyte.


Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Rosiara Rosária Dias Maziero ◽  
Carlos Renato de Freitas Guaitolini ◽  
Daniela Martins Paschoal ◽  
André Maciel Crespilho ◽  
Bianca Andriolo Monteiro ◽  
...  

SummaryThis study evaluated the effects of oocyte meiosis inhibitors roscovitine (ROS) and butyrolactone I (BL-I) on in vitro production of bovine embryos. Bovine oocytes were maintained in pre in vitro maturation (pre-IVM) with 25 µM ROS or 100 µM BL-I for 24 h to delay meiosis and for 24 h in in vitro maturation (IVM). Following this treatment, the nuclear maturation index was evaluated. All embryos degenerated following this procedure. In the second set of experiments, oocytes were maintained for 6 or 12 h in pre-IVM with the following three treatments: ROS (25 µM or 12.5 µM), BL-I (100 µM or 50 µM) or a combination of both drugs (6.25 µM ROS and 12.5 µM BL-I). Oocytes were cultivated for 18 or 12 h in IVM. When a meiosis-inducing agent was used during pre-IVM for 24 h, more degenerated oocytes were observed at the end of the IVM period. This effect decreased when the meiotic blocking period was reduced to 6 or 12 h. No significant differences were observed in the blastocyst production rate of oocytes in pre-IVM for 6 h with ROS, BL-I, or ROS + BL-I compared with that of the control group (P > 0.05). However, inhibition of oocytes for 12 h resulted in decreased embryo production compared with that in the controls (P < 0.05). There was no difference in the post-vitrification embryo re-expansion rate between the study groups, showing that the meiotic inhibition for 6 or 12 h did not alter the embryo cryopreservation process.


Zygote ◽  
2018 ◽  
Vol 26 (2) ◽  
pp. 162-167 ◽  
Author(s):  
Mohamed Fathi ◽  
A. Salama ◽  
Magdy R. Badr

SummaryThe aim of the current study was to investigate the effect of caffeine supplementation during in vitro maturation (IVM) for different maturation times on the developmental potential of canine oocytes recovered from ovariohysterectomized bitches. The recovered cumulus–oocytes complexes were in vitro matured for 72 h. Here, 10 mM caffeine was added to the maturation medium for different incubation times (caffeine from 0–72 h maturation, caffeine for the first 24 h of maturation only, caffeine addition from 24 to 48 h maturation time, caffeine addition from 48 to 72 h maturation or in caffeine-free medium, control group). The matured oocytes were in vitro fertilized using frozen–thawed spermatozoa. The presumptive zygotes were in vitro cultured in synthetic oviductal fluid medium for 5 days. The results showed that both maturation and fertilization rates were significantly higher (P ˂ 0.05) using caffeine-treated medium for the first 24 h of maturation compared with the control and other two groups of caffeine treatment (from 24 to 48 h and from 48 to 72 h), whereas use of caffeine-treated medium for a 0–72 h incubation time did not affect these rates (P > 0.05). Interestingly, the matured oocytes in caffeine-supplemented medium for the first 24 h or from 0–72 h showed a significant (P ˂ 0.05) increase in the total number of cleaved embryos compared with the control group. In conclusion, supplementation of the maturation medium with 10 mM caffeine for the first 24 h of maturation or during the whole maturation time (0–72 h) improved nuclear maturation and subsequent embryo development preimplantation following in vitro fertilization.


Sign in / Sign up

Export Citation Format

Share Document