Prediction of spatial ET-fluxes using remote sensing and field data of selected areas in the Eastern Part of Abu Dhabi, United Arab Emirates

Soil Research ◽  
2006 ◽  
Vol 44 (8) ◽  
pp. 759
Author(s):  
Fares M. Howari ◽  
Ahmed Murad ◽  
Hassan Garamoon

Evapotranspiration (ET) is a major source of water depletion in arid and semi-arid environments; and it is a poorly quantified variable in the hydrological cycle. Remote sensing has the potential application to quantify this variable especially at large scale. The present study reports methodology useful to determine whether derived variables from remotely sensed data, such as vegetation and soil brightness indices, could be used to predict ET. To achieve this goal, various regression analyses were conducted between data derived from satellites, field meteorological stations, and ET values. Selected sub-scenes of Landsat Enhanced Thematic Mapper images free of cloud were used to derive Normalized Difference Vegetation Index (NDVI) and Soil Brightness Index using ER-Mapper and JMP software packages. From the obtained relationship between NDVI and ET, it was observed that ET increases sharply with increase in NDVI. The predicted ET results obtained from the multiple regression functions of field ET, NDVI, solar radiation, wind velocity, and/or temperature are comparable with the ET values obtained by Penman-Monteith method. The results showed that a remotely sensed vegetation index could be used, indirectly, to determine ET values. However, there is still considerable work to be done before simple and full automated extraction of ET from the reported methods can be achieved for large-scale applications.

OENO One ◽  
2015 ◽  
Vol 49 (1) ◽  
pp. 1 ◽  
Author(s):  
Matthieu Marciniak ◽  
Ralph Brown ◽  
Andrew Reynolds ◽  
Marilyne Jollineau

<p style="text-align: justify;"><strong>Aim:</strong> The purpose of this study was to determine if multispectral high spatial resolution airborne imagery could be used to segregate zones in vineyards to target fruit of highest quality for premium winemaking. We hypothesized that remotely sensed data would correlate with vine size and leaf water potential (ψ), as well as with yield and berry composition.</p><p style="text-align: justify;"><strong>Methods and results:</strong> Hypotheses were tested in a 10-ha Riesling vineyard [Thirty Bench Winemakers, Beamsville (Ontario)]. The vineyard was delineated using GPS and 519 vines were geo-referenced. Six sub-blocks were delineated for study. Four were identified based on vine canopy size (low, high) with remote sensing in 2005. Airborne images were collected with a four-band digital camera every 3-4 weeks over 3 seasons (2007-2009). Normalized difference vegetation index (NDVI) values (NDVI-red, green) and greenness ratio were calculated from the images. Single-leaf reflectance spectra were collected to compare vegetation indices (VIs) obtained from ground-based and airborne remote-sensing data. Soil moisture, leaf ψ, yield components, vine size, and fruit composition were also measured. Strong positive correlations were observed between VIs and vine size throughout the growing season. Vines with higher VIs during average to dry years had enhanced fruit maturity (higher °Brix and lower titratable acidity). Berry monoterpenes always had the same relationship with remote sensing variables regardless of weather conditions.</p><p style="text-align: justify;"><strong>Conclusions:</strong> Remote sensing images can assist in delineating vineyard zones where fruit will be of different maturity levels, or will have different concentrations of aroma compounds. Those zones could be considered as sub-blocks and processed separately to make wines that reflect those terroir differences. Strongest relationships between remotely sensed VIs and berry composition variables occurred when images were taken around veraison.</p><strong>Significance and impact of the study:</strong> Remote sensing may be effective to quantify spatial variation in grape flavour potential within vineyards, in addition to characteristics such as water status, yield, and vine size. This study was unique by employing remote sensing in cover-cropped vineyards and using protocols for excluding spectral reflectance contributed by inter-row vegetation.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Erika Andujar ◽  
Nir Y. Krakauer ◽  
Chuixiang Yi ◽  
Felix Kogan

Remote sensing is used for monitoring the impacts of meteorological drought on ecosystems, but few large-scale comparisons of the response timescale to drought of different vegetation remote sensing products are available. We correlated vegetation health products derived from polar-orbiting radiometer observations with a meteorological drought indicator available at different aggregation timescales, the Standardized Precipitation Evapotranspiration Index (SPEI), to evaluate responses averaged globally and over latitude and biome. The remote sensing products are Vegetation Condition Index (VCI), which uses normalized difference vegetation index (NDVI) to identify plant stress, Temperature Condition Index (TCI), based on thermal emission as a measure of surface temperature, and Vegetation Health Index (VHI), the average of VCI and TCI. Globally, TCI correlated best with 2-month timescale SPEI, VCI correlated best with longer timescale droughts (peak mean correlation at 13 months), and VHI correlated best at an intermediate timescale of 4 months. Our results suggest that thermal emission (TCI) may better detect incipient drought than vegetation color (VCI). VHI had the highest correlations with SPEI at aggregation times greater than 3 months and hence may be the most suitable product for monitoring the effects of long droughts.


CERNE ◽  
2017 ◽  
Vol 23 (4) ◽  
pp. 413-422 ◽  
Author(s):  
Eduarda Martiniano de Oliveira Silveira ◽  
José Márcio de Mello ◽  
Fausto Weimar Acerbi Júnior ◽  
Aliny Aparecida dos Reis ◽  
Kieran Daniel Withey ◽  
...  

ABSTRACT Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index) was generated in an area of Brazilian amazon tropical forest (1,000 km²). We selected samples (1 x 1 km) from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property) and range (φ-the length scale of the spatial structures of objects) parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA) approaches.


Author(s):  
Pandji W. Dhewantara ◽  
Wenbiao Hu ◽  
Wenyi Zhang ◽  
Wenwu Yin ◽  
Fan Ding ◽  
...  

ObjectiveTo quantify the effects of climate variability, selected remotely-sensed environmental factors on human leptospirosis in the high-risk counties in China.IntroductionLeptospirosis is a zoonotic disease caused by the pathogenic Leptospira bacteria and is ubiquitously distributed in tropical and subtropical regions. Leptospirosis transmission driven by complex factors include climatic, environmental and local social conditions 1. Each year, there are about 1 million cases of human leptospirosis reported globally and it causes approximately 60,000 people lost their lives due to infection 2. Yunnan Province and Sichuan Province are two of highly endemic areas in the southwest China that had contributed for 47% of the total national reported cases during 2005-2015 3. Factors underlying local leptospirosis transmission in these two areas is far from clear and thus hinder the efficacy of control strategies. Hence, it is essential to assess and identify local key drivers associated with persistent leptospirosis transmission in that areas to lay foundation for the development of early-warning systems. Currently, remote sensing technology provides broad range of physical environment data at various spatial and temporal scales 4, which can be used to understand the leptospirosis epidemiology. Utilizing satellite-based environmental data combined with locally-acquired weather data may potentially enhance existing surveillance programs in China so that the burden of leptospirosis could be reduced.MethodsThis study was carried out in two counties situated in different climatic zone in the southwestern China, Mengla and Yilong County (Fig 1). Total of 543 confirmed leptospirosis cases reported during 2006-2016 from both counties were used in this analysis. Time series decomposition was used to explore the long-term seasonality of leptospirosis incidence in two counties during the period studied. Monthly remotely-sensed environmental data such as normalized difference vegetation index (NDVI), modified normalized water difference index (MNDWI) and land surface temperature (LST) were collected from satellite databases. Climate data include monthly precipitation and relative humidity (RH) data were obtained from local weather stations. Lagged effects of rainfall, humidity, normalized difference vegetation index (NDVI), modified normalized difference water index (MNDWI) and land surface temperature (LST) on leptospirosis was examined. Generalized linear model with negative binomial link was used to assess the relationships of climatic and physical environment factors with leptospirosis. Best-fitted model was determined based on the lowest information criterion and deviance.ResultsLeptospirosis incidence in both counties showed strong and unique annual seasonality. Bi-modal temporal pattern was exhibited in Mengla County while single epidemic curve was persistently demonstrated in Yilong County (Fig 2). Total of 10 and 20 models were generated for Mengla and Yilong County, respectively. After adjusting for seasonality, final best-fitted models indicated that rainfall at lag of 6-month (incidence rate ratio (IRR)= 0.989; 95% confidence interval (CI) 0.985-0.993, p<0.001) and current LST (IRR=0.857, 95%CI:0.729-0.929, p<0.001) significantly associated with leptospirosis in Mengla County (Table 1). While in Yilong, rainfall at 1-month lag, MNDWI (5-months lag) and LST (3-months lag) were associated with an increased incidence of leptospirosis with a risk ratio of 1.013 (95%CI: 1.003-1.023), 7.960 (95%CI: 1.241-47.66) and 1.193 (95%CI:1.095-1.301), respectively.ConclusionsOur study identified lagged effect and relationships of weather and remotely-sensed environmental factors with leptospirosis in two endemic counties in China. Rainfall in combination with satellite derived physical environment factors such as flood/water indicator (MNDWI) and temperature (LST) could help explain the local epidemiology as well as good predictors for leptospirosis outbreak in both counties. This would also be an avenue for the development of leptospirosis early warning system in to support leptospirosis control in China.References1. Haake, D. A. , Levett, P. N. Leptospirosis in humans. Current Topics in Microbiology and Immunology 2015, 387, 65-97.2. Costa, F. et al. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLOS Neglected Tropical Diseases 2015, 9, e0003898.3. Dhewantara, P. W. et al. Epidemiological shift and geographical heterogeneity in the burden of leptospirosis in China. Infectious Diseases of Poverty 2018, 7, 57.4. Herbreteau, V., Salem, G., Souris, M., Hugot, J. P. & Gonzalez, J. P. Thirty years of use and improvement of remote sensing, applied to epidemiology: from early promises to lasting frustration. Health & Place 2007, 13, 400-403. 


Author(s):  
Ankita P. Kamble ◽  
A. A. Atre ◽  
Payal A. Mahadule ◽  
C. B. Pande ◽  
N. S. Kute ◽  
...  

Pests and diseases cause major harm during crop development. Also plant stress affects crop quality and quantity. Recent developments in high resolution remotely sensed data has seen a great potential in mapping cropland areas infected by pests and diseases, as well as potential vulnerable areas over expansive areas. Crop health monitoring in this study was carried out using remote sensing techniques. The present study was carried out in MPKV, Rahuri, Ahmednagar District, Maharashtra. Vegetation indices like Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) were used to classify the crops into healthy and dead or unhealthy one. Sentinel-2 image data from October 2019 to January 2020 processed in Arc GIS 10.1 were used for this study. Vegetation is a key component of the ecosystem and plays an important role in stabilizing the global environment. The result showed that the average vegetation cover was decreased in the month of November and healthy vegetation was found more in month of October as compared to December and January. This shows that NDVI and SAVI indices for Sentinel-2 images can be used for crop health monitoring.


2019 ◽  
Vol 11 (4) ◽  
pp. 463 ◽  
Author(s):  
Céline Boisvenue ◽  
Joanne White

Forests are integral to the global carbon cycle, and as a result, the accurate estimation of forest structure, biomass, and carbon are key research priorities for remote sensing science. However, estimating and understanding forest carbon and its spatiotemporal variations requires diverse knowledge from multiple research domains, none of which currently offer a complete understanding of forest carbon dynamics. New large-area forest information products derived from remotely sensed data provide unprecedented spatial and temporal information about our forests, which is information that is currently underutilized in forest carbon models. Our goal in this communication is to articulate the information needs of next-generation forest carbon models in order to enable the remote sensing community to realize the best and most useful application of its science, and perhaps also inspire increased collaboration across these research fields. While remote sensing science currently provides important contributions to large-scale forest carbon models, more coordinated efforts to integrate remotely sensed data into carbon models can aid in alleviating some of the main limitations of these models; namely, low sample sizes and poor spatial representation of field data, incomplete population sampling (i.e., managed forests exclusively), and an inadequate understanding of the processes that influence forest carbon accumulation and fluxes across spatiotemporal scales. By articulating the information needs of next-generation forest carbon models, we hope to bridge the knowledge gap between remote sensing experts and forest carbon modelers, and enable advances in large-area forest carbon modeling that will ultimately improve estimates of carbon stocks and fluxes.


2020 ◽  
Vol 12 (3) ◽  
pp. 450 ◽  
Author(s):  
Quan Xiong ◽  
Yuan Wang ◽  
Diyou Liu ◽  
Sijing Ye ◽  
Zhenbo Du ◽  
...  

Nowadays, GF-1 (GF is the acronym for GaoFen which means high-resolution in Chinese) remote sensing images are widely utilized in agriculture because of their high spatio-temporal resolution and free availability. However, due to the transferrable rationale of optical satellites, the GF-1 remote sensing images are inevitably impacted by clouds, which leads to a lack of ground object’s information of crop areas and adds noises to research datasets. Therefore, it is crucial to efficiently detect the cloud pixel of GF-1 imagery of crop areas with powerful performance both in time consumption and accuracy when it comes to large-scale agricultural processing and application. To solve the above problems, this paper proposed a cloud detection approach based on hybrid multispectral features (HMF) with dynamic thresholds. This approach combined three spectral features, namely the Normalized Difference Vegetation Index (NDVI), WHITENESS and the Haze-Optimized Transformation (HOT), to detect the cloud pixels, which can take advantage of the hybrid Multispectral Features. Meanwhile, in order to meet the variety of the threshold values in different seasons, a dynamic threshold adjustment method was adopted, which builds a relationship between the features and a solar altitude angle to acquire a group of specific thresholds for an image. With the test of GF-1 remote sensing datasets and comparative trials with Random Forest (RF), the results show that the method proposed in this paper not only has high accuracy, but also has advantages in terms of time consumption. The average accuracy of cloud detection can reach 90.8% and time consumption for each GF-1 imagery can reach to 5 min, which has been reduced by 83.27% compared with RF method. Therefore, the approach presented in this work could serve as a reference for those who are interested in the cloud detection of remote sensing images.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Kenneth Aidoo ◽  
Nana Ama Browne Klutse ◽  
Kofi Asare ◽  
Comfort Gyasiwaa Botchway ◽  
Samuel Fosuhene

Climate change is having an adverse effect on the environment especially in sub-Sahara Africa, where capacity for natural resource management such as water is very low. The scope of the effect on land use types have to be estimated to inform proper remedy. A combined estimation of transpiration and evaporation from plants and soil is critical to determine annual water requirement for different land use. Evapotranspiration (ET) is a major component in the world hydrological cycle, and understanding its spatial dimensions is critical in evaluating the effects it has on regional land use. A measure of this component is challenging due to variation in rainfall and environmental changes. The mapping evapotranspiration with high resolution and internalized calibration (METRIC) method is employed to create evapotranspiration map for land use, using remotely sensed data by satellite, processed, and analyzed in ArcGIS. Normalized difference vegetation index (NDVI) was related to the availability of water for vegetation on different land use, and the results indicate a high evapotranspiration for vegetated land use with high NDVI than land use with low NDVI.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3427
Author(s):  
João Serrano ◽  
Shakib Shahidian ◽  
José Marques da Silva ◽  
Luís Paixão ◽  
Francisco Moral ◽  
...  

Climate change, especially the trend towards global warming, will significantly affect the global hydrological cycle, leading to a general reduction of the water available for agriculture. In this scenario, it is essential that research should focus on the development of ‘water saving’ techniques and technologies. This work summarizes the methodology followed in a project for large scale implementation of variable rate irrigation (VRI) systems using center pivots in corn crop. This is based on technologies for monitoring (i) soil electrical conductivity (ECa) and altimetry, (ii) soil moisture content, (iii) vegetation indices (Normalized Difference Vegetation Index, NDVI) obtained from satellite images, and automatic pivot travel speed control technologies. ECa maps were the basis for the definition of first homogeneous management zones (HMZ) in an experimental corn field of 28 ha. NDVI time-series were used to establish the subsequent HMZ and the respective dynamic prescription irrigation maps. The main result of this study was the reduction of spatial yield variability with the VRI management in 2017 compared to the conventional irrigation management. This study demonstrates how a relatively simple approach could be designed and implemented on a large scale, which represents an important and sustainable contribution to the resolution of practical farmer issues.


2019 ◽  
Vol 11 (1-2) ◽  
pp. 9-16
Author(s):  
M Rahman ◽  
MS Islam ◽  
TA Chowdhury

Nearly one million Rohingya Refugees are living in Cox’s Bazar—a south-eastern district of Bangladesh; among them, more than half a million have fled Myanmar since August 2017. There are always some impacts of refugee settlements on the host environment. Hence, this study has made an initiative to investigate the changes of vegetation covers in four refugee occupied Unions of Teknaf and Ukhia Upazila. Analysing the remotely sensed Landsat imageries using Normalized Difference Vegetation Index method, the spatial extent of sparse vegetation, moderate vegetation, and dense vegetation before and after the occurrence of 2017 Influx have been quantified. The result reveals that nearly 21,000 acres of dense vegetation and more than 1700 acres of moderate vegetation have been reduced within the period of one year in-between 2017 and 2018. On the other hand, during the same period, the refugee sites have been expanded by almost 6000 acres. The main reasons for this drastic reduction of vegetation include the construction of refugee camps by felling the forest and consumption of firewood by refugees from the surrounding forest of their camps. Arrangement of alternative cooking fuel, relocation of refugees, reforestation, and accelerating the repatriation process may reduce the further degradation of vegetation. J. Environ. Sci. & Natural Resources, 11(1-2): 9-16 2018


Sign in / Sign up

Export Citation Format

Share Document