scholarly journals Information Needs of Next-Generation Forest Carbon Models: Opportunities for Remote Sensing Science

2019 ◽  
Vol 11 (4) ◽  
pp. 463 ◽  
Author(s):  
Céline Boisvenue ◽  
Joanne White

Forests are integral to the global carbon cycle, and as a result, the accurate estimation of forest structure, biomass, and carbon are key research priorities for remote sensing science. However, estimating and understanding forest carbon and its spatiotemporal variations requires diverse knowledge from multiple research domains, none of which currently offer a complete understanding of forest carbon dynamics. New large-area forest information products derived from remotely sensed data provide unprecedented spatial and temporal information about our forests, which is information that is currently underutilized in forest carbon models. Our goal in this communication is to articulate the information needs of next-generation forest carbon models in order to enable the remote sensing community to realize the best and most useful application of its science, and perhaps also inspire increased collaboration across these research fields. While remote sensing science currently provides important contributions to large-scale forest carbon models, more coordinated efforts to integrate remotely sensed data into carbon models can aid in alleviating some of the main limitations of these models; namely, low sample sizes and poor spatial representation of field data, incomplete population sampling (i.e., managed forests exclusively), and an inadequate understanding of the processes that influence forest carbon accumulation and fluxes across spatiotemporal scales. By articulating the information needs of next-generation forest carbon models, we hope to bridge the knowledge gap between remote sensing experts and forest carbon modelers, and enable advances in large-area forest carbon modeling that will ultimately improve estimates of carbon stocks and fluxes.

Soil Research ◽  
2006 ◽  
Vol 44 (8) ◽  
pp. 759
Author(s):  
Fares M. Howari ◽  
Ahmed Murad ◽  
Hassan Garamoon

Evapotranspiration (ET) is a major source of water depletion in arid and semi-arid environments; and it is a poorly quantified variable in the hydrological cycle. Remote sensing has the potential application to quantify this variable especially at large scale. The present study reports methodology useful to determine whether derived variables from remotely sensed data, such as vegetation and soil brightness indices, could be used to predict ET. To achieve this goal, various regression analyses were conducted between data derived from satellites, field meteorological stations, and ET values. Selected sub-scenes of Landsat Enhanced Thematic Mapper images free of cloud were used to derive Normalized Difference Vegetation Index (NDVI) and Soil Brightness Index using ER-Mapper and JMP software packages. From the obtained relationship between NDVI and ET, it was observed that ET increases sharply with increase in NDVI. The predicted ET results obtained from the multiple regression functions of field ET, NDVI, solar radiation, wind velocity, and/or temperature are comparable with the ET values obtained by Penman-Monteith method. The results showed that a remotely sensed vegetation index could be used, indirectly, to determine ET values. However, there is still considerable work to be done before simple and full automated extraction of ET from the reported methods can be achieved for large-scale applications.


Author(s):  
Nikifor Ostanin ◽  
Nikifor Ostanin

Coastal zone of the Eastern Gulf of Finland is subjected to essential natural and anthropogenic impact. The processes of abrasion and accumulation are predominant. While some coastal protection structures are old and ruined the problem of monitoring and coastal management is actual. Remotely sensed data is important component of geospatial information for coastal environment research. Rapid development of modern satellite remote sensing techniques and data processing algorithms made this data essential for monitoring and management. Multispectral imagers of modern high resolution satellites make it possible to produce advanced image processing, such as relative water depths estimation, sea-bottom classification and detection of changes in shallow water environment. In the framework of the project of development of new coast protection plan for the Kurortny District of St.-Petersburg a series of archival and modern satellite images were collected and analyzed. As a result several schemes of underwater parts of coastal zone and schemes of relative bathymetry for the key areas were produced. The comparative analysis of multi-temporal images allow us to reveal trends of environmental changes in the study areas. This information, compared with field observations, shows that remotely sensed data is useful and efficient for geospatial planning and development of new coast protection scheme.


2021 ◽  
Vol 13 (3) ◽  
pp. 368
Author(s):  
Christopher A. Ramezan ◽  
Timothy A. Warner ◽  
Aaron E. Maxwell ◽  
Bradley S. Price

The size of the training data set is a major determinant of classification accuracy. Nevertheless, the collection of a large training data set for supervised classifiers can be a challenge, especially for studies covering a large area, which may be typical of many real-world applied projects. This work investigates how variations in training set size, ranging from a large sample size (n = 10,000) to a very small sample size (n = 40), affect the performance of six supervised machine-learning algorithms applied to classify large-area high-spatial-resolution (HR) (1–5 m) remotely sensed data within the context of a geographic object-based image analysis (GEOBIA) approach. GEOBIA, in which adjacent similar pixels are grouped into image-objects that form the unit of the classification, offers the potential benefit of allowing multiple additional variables, such as measures of object geometry and texture, thus increasing the dimensionality of the classification input data. The six supervised machine-learning algorithms are support vector machines (SVM), random forests (RF), k-nearest neighbors (k-NN), single-layer perceptron neural networks (NEU), learning vector quantization (LVQ), and gradient-boosted trees (GBM). RF, the algorithm with the highest overall accuracy, was notable for its negligible decrease in overall accuracy, 1.0%, when training sample size decreased from 10,000 to 315 samples. GBM provided similar overall accuracy to RF; however, the algorithm was very expensive in terms of training time and computational resources, especially with large training sets. In contrast to RF and GBM, NEU, and SVM were particularly sensitive to decreasing sample size, with NEU classifications generally producing overall accuracies that were on average slightly higher than SVM classifications for larger sample sizes, but lower than SVM for the smallest sample sizes. NEU however required a longer processing time. The k-NN classifier saw less of a drop in overall accuracy than NEU and SVM as training set size decreased; however, the overall accuracies of k-NN were typically less than RF, NEU, and SVM classifiers. LVQ generally had the lowest overall accuracy of all six methods, but was relatively insensitive to sample size, down to the smallest sample sizes. Overall, due to its relatively high accuracy with small training sample sets, and minimal variations in overall accuracy between very large and small sample sets, as well as relatively short processing time, RF was a good classifier for large-area land-cover classifications of HR remotely sensed data, especially when training data are scarce. However, as performance of different supervised classifiers varies in response to training set size, investigating multiple classification algorithms is recommended to achieve optimal accuracy for a project.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3982
Author(s):  
Giacomo Lazzeri ◽  
William Frodella ◽  
Guglielmo Rossi ◽  
Sandro Moretti

Wildfires have affected global forests and the Mediterranean area with increasing recurrency and intensity in the last years, with climate change resulting in reduced precipitations and higher temperatures. To assess the impact of wildfires on the environment, burned area mapping has become progressively more relevant. Initially carried out via field sketches, the advent of satellite remote sensing opened new possibilities, reducing the cost uncertainty and safety of the previous techniques. In the present study an experimental methodology was adopted to test the potential of advanced remote sensing techniques such as multispectral Sentinel-2, PRISMA hyperspectral satellite, and UAV (unmanned aerial vehicle) remotely-sensed data for the multitemporal mapping of burned areas by soil–vegetation recovery analysis in two test sites in Portugal and Italy. In case study one, innovative multiplatform data classification was performed with the correlation between Sentinel-2 RBR (relativized burn ratio) fire severity classes and the scene hyperspectral signature, performed with a pixel-by-pixel comparison leading to a converging classification. In the adopted methodology, RBR burned area analysis and vegetation recovery was tested for accordance with biophysical vegetation parameters (LAI, fCover, and fAPAR). In case study two, a UAV-sensed NDVI index was adopted for high-resolution mapping data collection. At a large scale, the Sentinel-2 RBR index proved to be efficient for burned area analysis, from both fire severity and vegetation recovery phenomena perspectives. Despite the elapsed time between the event and the acquisition, PRISMA hyperspectral converging classification based on Sentinel-2 was able to detect and discriminate different spectral signatures corresponding to different fire severity classes. At a slope scale, the UAV platform proved to be an effective tool for mapping and characterizing the burned area, giving clear advantage with respect to filed GPS mapping. Results highlighted that UAV platforms, if equipped with a hyperspectral sensor and used in a synergistic approach with PRISMA, would create a useful tool for satellite acquired data scene classification, allowing for the acquisition of a ground truth.


Author(s):  
James A. Westfall ◽  
Andrew J. Lister ◽  
John W. Coulston ◽  
Ronald E. McRoberts

Post-stratification is often used to increase the precision of estimates arising from large-area forest inventories with plots established at permanent locations. Remotely sensed data and associated spatial products are often used for developing the post-stratification, which offers a mechanism to increase precision for less cost than increasing the sample size. While important variance reductions have been shown from post-stratification, it remains unknown where observed gains lie along the continuum of possible gains. This information is needed to determine whether efforts to further improve post-stratification outcomes are warranted. In this study, two types of ‘optimal’ post-stratification were compared to typical production-based post-stratifications to estimate the magnitude of remaining gains possible. Although the ‘optimal’ post-stratifications were derived using methods inappropriate for operational usage, the results indicated that substantial further increases in precision for estimates of both forest area and total tree biomass could be obtained with better post-stratifications. The potential gains differed by the attribute being estimated, the population being studied, and the number of strata. Practitioners seeking to optimize post-stratification face challenges such as evaluation of numerous auxiliary data sources, temporal misalignment between plot observations and remotely sensed data acquisition, and spatial misalignment between plot locations and remotely sensed data due to positional errors in both data types.


Author(s):  
Sassi Mohamed Taher

This document is meant to demonstrate the potential uses of remote sensing in managing water resources for irrigated agriculture and to create awareness among potential users. Researchers in various international programs have studied the potential use of remotely sensed data to obtain accurate information on land surface processes and conditions. These studies have demonstrated that quantitative assessment of the soil-vegetation-atmosphere transfer processes can lead to a better understanding of the relationships between crop growth and water management. Remote sensing and GIS was used to map the agriculture area and for detect the change. This was very useful for mapping availability and need of water resources but the problem was concentrating in data collection and analysis because this kind of information and expertise are not available in all country in the world mainly in the developing and under developed country or third world country. However, even though considerable progress has been made over the past 20 years in research applications, remotely sensed data remain underutilized by practicing water resource managers. This paper seeks to bridge the gap between researchers and practitioners first, by illustrating where research tools and techniques have practical applications and, second, by identifying real problems that remote sensing could solve. An important challenge in the field of water resources is to utilize the timely, objective and accurate information provided by remote sensing.


2020 ◽  
Vol 12 (8) ◽  
pp. 1320 ◽  
Author(s):  
Laura Chasmer ◽  
Danielle Cobbaert ◽  
Craig Mahoney ◽  
Koreen Millard ◽  
Daniel Peters ◽  
...  

Wetlands have and continue to undergo rapid environmental and anthropogenic modification and change to their extent, condition, and therefore, ecosystem services. In this first part of a two-part review, we provide decision-makers with an overview on the use of remote sensing technologies for the ‘wise use of wetlands’, following Ramsar Convention protocols. The objectives of this review are to provide: (1) a synthesis of the history of remote sensing of wetlands, (2) a feasibility study to quantify the accuracy of remotely sensed data products when compared with field data based on 286 comparisons found in the literature from 209 articles, (3) recommendations for best approaches based on case studies, and (4) a decision tree to assist users and policymakers at numerous governmental levels and industrial agencies to identify optimal remote sensing approaches based on needs, feasibility, and cost. We argue that in order for remote sensing approaches to be adopted by wetland scientists, land-use managers, and policymakers, there is a need for greater understanding of the use of remote sensing for wetland inventory, condition, and underlying processes at scales relevant for management and policy decisions. The literature review focuses on boreal wetlands primarily from a Canadian perspective, but the results are broadly applicable to policymakers and wetland scientists globally, providing knowledge on how to best incorporate remotely sensed data into their monitoring and measurement procedures. This is the first review quantifying the accuracy and feasibility of remotely sensed data and data combinations needed for monitoring and assessment. These include, baseline classification for wetland inventory, monitoring through time, and prediction of ecosystem processes from individual wetlands to a national scale.


Author(s):  
Ram L. Ray ◽  
Maurizio Lazzari ◽  
Tolulope Olutimehin

Landslide is one of the costliest and fatal geological hazards, threatening and influencing the socioeconomic conditions in many countries globally. Remote sensing approaches are widely used in landslide studies. Landslide threats can also be investigated through slope stability model, susceptibility mapping, hazard assessment, risk analysis, and other methods. Although it is possible to conduct landslide studies using in-situ observation, it is time-consuming, expensive, and sometimes challenging to collect data at inaccessible terrains. Remote sensing data can be used in landslide monitoring, mapping, hazard prediction and assessment, and other investigations. The primary goal of this chapter is to review the existing remote sensing approaches and techniques used to study landslides and explore the possibilities of potential remote sensing tools that can effectively be used in landslide studies in the future. This chapter also provides critical and comprehensive reviews of landslide studies focus¬ing on the role played by remote sensing data and approaches in landslide hazard assessment. Further, the reviews discuss the application of remotely sensed products for landslide detection, mapping, prediction, and evaluation around the world. This systematic review may contribute to better understanding the extensive use of remotely sensed data and spatial analysis techniques to conduct landslide studies at a range of scales.


2020 ◽  
Vol 12 (24) ◽  
pp. 4139
Author(s):  
Ruirui Wang ◽  
Wei Shi ◽  
Pinliang Dong

The nighttime light (NTL) on the surface of Earth is an important indicator for the human transformation of the world. NTL remotely sensed data have been widely used in urban development, population estimation, economic activity, resource development and other fields. With the increasing use of artificial lighting technology in agriculture, it has become possible to use NTL remote sensing data for monitoring agricultural activities. In this study, National Polar Partnership (NPP)-Visible Infrared Imaging Radiometer Suite (VIIRS) NTL remote sensing data were used to observe the seasonal variation of artificial lighting in dragon fruit cropland in Binh Thuan Province, Vietnam. Compared with the statistics of planted area, area having products and production of dragon fruit by district in the Statistical Yearbook of Binh Thuan Province 2018, values of the mean and standard deviation of NTL brightness have significant positive correlations with the statistical data. The results suggest that the NTL remotely sensed data could be used to reveal some agricultural productive activities such as dragon fruits production accurately by monitoring the seasonal artificial lighting. This research demonstrates the application potential of NTL remotely sensed data in agriculture.


Sign in / Sign up

Export Citation Format

Share Document