Soil carbon sequestration in cool-temperate dryland pastures: mechanisms and management options

Soil Research ◽  
2015 ◽  
Vol 53 (4) ◽  
pp. 349 ◽  
Author(s):  
Alieta Eyles ◽  
Garth Coghlan ◽  
Marcus Hardie ◽  
Mark Hovenden ◽  
Kerry Bridle

Permanent pastures, which include sown, native and naturalised pastures, account for 4.3 Mha (56%) of the national land use in Australia. Given their extent, pastures are of great interest with respect to their potential to influence national carbon (C) budgets and CO2 mitigation. Increasing soil organic C (SOC) mitigates greenhouse gases while providing other benefits such as pasture productivity, soil health and ecosystem services. Several management approaches have been recommended to increase C sequestration in pasture-based systems; however, results have proved variable and often contradictory between sites and years. Here, we present an overview of the processes and mechanisms responsible for C sequestration in permanent pastures. In addition, we discuss the merits of traditional and emerging pasture-management practices for increasing SOC in pastures, with a focus on dryland pasture systems of south-eastern Australia. We conclude by summarising the knowledge gaps and research priorities for soil C-sequestration research in dryland pastures. Our review confirms that soils under a range of pasture types have considerable potential for sequestration of atmospheric CO2 in Australia, and that the magnitude of this potential can be greatly modified by pasture-management practices. Although the shortage of long-term studies under Australian conditions limits our ability to predict the potential of various management approaches to sequester soil C, our review indicates that prevention of erosion through maintenance of groundcover and adoption of options that promote deep C sequestration are likely to confer broad-scale maintenance or increases in SOC in pasture soils over a decade or longer. We acknowledge that the evidence is limited; therefore, confidence in the recommended practices in different locations and climates is largely unknown.

Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 435 ◽  
Author(s):  
R. C. Dalal ◽  
K. Y. Chan

The Australian cereal belt stretches as an arc from north-eastern Australia to south-western Australia (24˚S–40˚S and 125˚E–147˚E), with mean annual temperatures from 14˚C (temperate) to 26˚C (subtropical), and with annual rainfall ranging from 250 mm to 1500 mm. The predominant soil types of the cereal belt include Chromosols, Kandosols, Sodosols, and Vertosols, with significant areas of Ferrosols, Kurosols, Podosols, and Dermosols, covering approximately 20 Mha of arable cropping and 21 Mha of ley pastures. Cultivation and cropping has led to a substantial loss of soil organic matter (SOM) from the Australian cereal belt; the long-term SOM loss often exceeds 60% from the top 0–0.1 m depth after 50 years of cereal cropping. Loss of labile components of SOM such as sand-size or particulate SOM, microbial biomass, and mineralisable nitrogen has been even higher, thus resulting in greater loss in soil productivity than that assessed from the loss of total SOM alone. Since SOM is heterogeneous in nature, the significance and functions of its various components are ambiguous. It is essential that the relationship between levels of total SOM or its identif iable components and the most affected soil properties be established and then quantif ied before the concentrations or amounts of SOM and/or its components can be used as a performance indicator. There is also a need for experimentally verifiable soil organic C pools in modelling the dynamics and management of SOM. Furthermore, the interaction of environmental pollutants added to soil, soil microbial biodiversity, and SOM is poorly understood and therefore requires further study. Biophysically appropriate and cost-effective management practices for cereal cropping lands are required for restoring and maintaining organic matter for sustainable agriculture and restoration of degraded lands. The additional benefit of SOM restoration will be an increase in the long-term greenhouse C sink, which has the potentialto reduce greenhouse emissions by about 50 Mt CO2 equivalents/year over a 20-year period, although current improved agricultural practices can only sequester an estimated 23% of the potential soil C sink.


Soil Research ◽  
2014 ◽  
Vol 52 (5) ◽  
pp. 476 ◽  
Author(s):  
Eleanor Hobley ◽  
Garry R. Willgoose ◽  
Silvia Frisia ◽  
Geraldine Jacobsen

Both aggregation and mineral association have been previously found to enhance soil organic carbon (SOC) storage (the amount of organic C retained in a soil), and stability (the length of time organic C is retained in a soil). These mechanisms are therefore attractive targets for soil C sequestration. In this study, we investigate and compare SOC storage and stability of SOC associated with fine minerals and stored within aggregates using a combination of particle-size fractionation, elemental analysis and radiocarbon dating. In this heavy-textured, highly aggregated soil, SOC was found to be preferentially associated with fine minerals throughout the soil profile. By contrast, the oldest SOC was located in the coarsest, most highly aggregated fraction. In the topsoil, radiocarbon ages of the aggregate-associated SOC indicate retention times in the order of centuries. Below the topsoil, retention times of aggregate-SOC are in the order of millennia. Throughout the soil profile, radiocarbon dates indicate an enhanced stability in the order of centuries compared with the fine mineral fraction. Despite this, the radiocarbon ages of the mineral-associated SOC were in the order of centuries to millennia in the subsoil (30–100 cm), indicating that mineral-association is also an effective stabilisation mechanism in this subsoil. Our results indicate that enhanced SOC storage does not equate to enhanced SOC stability, which is an important consideration for sequestration schemes targeting both the amount and longevity of soil carbon.


2021 ◽  
Vol 13 (4) ◽  
pp. 1991
Author(s):  
Silvia Stanchi ◽  
Odoardo Zecca ◽  
Csilla Hudek ◽  
Emanuele Pintaldi ◽  
Davide Viglietti ◽  
...  

We studied the effects of three soil management approaches (permanent grassing, chemical weeding, and buffer strips), and the additional impact of tractor passage on soil erosion in a sloping vineyard located in the inner part of Aosta Valley (N-W Italian Alps). The vineyard rows were equipped with a sediment collection system with channels and barrel tanks. A total of 12 events with sediment production were observed across 6 years, and the collected sediments were weighted and analyzed. Average erosion rates ranged from negligible (mainly in grassed rows) to 1.1 t ha−1 per event (after weeding). The most erosive event occurred in July 2015, with a total rainfall of 32.2 mm, of which 20.1 were recorded in 1 h. Despite the limited number of erosive events observed, and the low measured erosion rates, permanent grassing reduced soil erosion considerably with respect to weeding; buffering had a comparable effect to grassing. The tractor passage, independent of the soil management approaches adopted, visibly accelerated the erosion process. The collected sediments were highly enriched in organic C, total N, and fine size fractions, indicating a potential loss of fertility over time. Despite the measured erosion rates being low over the experiment’s duration, more severe events are well documented in the recent past, and the number of intense storms is likely to increase due to climate change. Thus, the potential effects of erosion in the medium and long term need to be limited to a minimum rate of soil loss. Our experiment helped to compare soil losses by erosion under different soil management practices, including permanent grassing, i.e., a nature-based erosion mitigation measure. The results of the research can provide useful indications for planners and practitioners in similar regions, for sustainable, cross-sectoral soil management, and the enhancement of soil ecosystem services.


2014 ◽  
Vol 94 (6) ◽  
pp. 1025-1032 ◽  
Author(s):  
F. L. Walley ◽  
A. W. Gillespie ◽  
Adekunbi B. Adetona ◽  
J. J. Germida ◽  
R. E. Farrell

Walley, F. L., Gillespie, A. W., Adetona, A. B., Germida, J. J. and Farrell, R. E. 2014. Manipulation of rhizosphere organisms to enhance glomalin production and C-sequestration: Pitfalls and promises. Can. J. Plant Sci. 94: 1025–1032. Arbuscular mycorrhizal fungi (AMF) reportedly produce glomalin, a glycoprotein that has the potential to increase soil carbon (C) and nitrogen (N) storage. We hypothesized that interactions between rhizosphere microorganisms, such as plant growth-promoting rhizobacteria (PGPR), and AMF, would influence glomalin production. Our objectives were to determine the effects of AMF/PGPR interactions on plant growth and glomalin production in the rhizosphere of pea (Pisum sativum L.) with the goal of enhancing C and N storage in the rhizosphere. One component of the study focussed on the molecular characterization of glomalin and glomalin-related soil protein (GRSP) using complementary synchrotron-based N and C X-ray absorption near-edge structure (XANES) spectroscopy, pyrolysis field ionization mass spectrometry (Py-FIMS), and proteomics techniques to characterize specific organic C and N fractions associated with glomalin production. Our research ultimately led us to conclude that the proteinaceous material extracted, and characterized in the literature, as GRSP is not exclusively of AMF origin. Our research supports the established concept that GRSP is important to soil quality, and C and N storage, irrespective of origin. However, efforts to manipulate this important soil C pool will remain compromised until we more clearly elucidate the chemical nature and origin of this resource.


Soil Research ◽  
2012 ◽  
Vol 50 (2) ◽  
pp. 83 ◽  
Author(s):  
W. E. Cotching

Soil carbon (C) stocks were calculated for Tasmanian soil orders to 0.3 and 1.0 m depth from existing datasets. Tasmanian soils have C stocks of 49–117 Mg C/ha in the upper 0.3 m, with Ferrosols having the largest soil C stocks. Mean soil C stocks in agricultural soils were significantly lower under intensive cropping than under irrigated pasture. The range in soil C within soil orders indicates that it is critical to determine initial soil C stocks at individual sites and farms for C accounting and trading purposes, because the initial soil C content will determine if current or changed management practices are likely to result in soil C sequestration or emission. The distribution of C within the profile was significantly different between agricultural and forested land, with agricultural soils having two-thirds of their soil C in the upper 0.3 m, compared with half for forested soils. The difference in this proportion between agricultural and forested land was largest in Dermosols (0.72 v. 0.47). The total amount of soil C in a soil to 1.0 m depth may not change with a change in land use, but the distribution can and any change in soil C deeper in the profile might affect how soil C can be managed for sequestration. Tasmanian soil C stocks are significantly greater than those in mainland states of Australia, reflecting the lower mean annual temperature and higher precipitation in Tasmania, which result in less oxidation of soil organic matter.


2021 ◽  
Author(s):  
Sylvia Vetter ◽  
Michael Martin ◽  
Pete Smith

<p>Reducing greenhouse gas (GHG) emissions in to the atmosphere to limit global warming is the big challenge of the coming decades. The focus lies on negative emission technologies to remove GHGs from the atmosphere from different sectors. Agriculture produces around a quarter of all the anthropogenic GHGs globally (including land use change and afforestation). Reducing these net emissions can be achieved through techniques that increase the soil organic carbon (SOC) stocks. These techniques include improved management practices in agriculture and grassland systems, which increase the organic carbon (C) input or reduce soil disturbances. The C sequestration potential differs among soils depending on climate, soil properties and management, with the highest potential for poor soils (SOC stock farthest from saturation).</p><p>Modelling can be used to estimate the technical potential to sequester C of agricultural land under different mitigation practices for the next decades under different climate scenarios. The ECOSSE model was developed to simulate soil C dynamics and GHG emissions in mineral and organic soils. A spatial version of the model (GlobalECOSSE) was adapted to simulate agricultural soils around the world to calculate the SOC change under changing management and climate.</p><p>Practices like different tillage management, crop rotations and residue incorporation showed regional differences and the importance of adapting mitigation practices under an increased changing climate. A fast adoption of practices that increase SOC has its own challenges, as the potential to sequester C is high until the soil reached a new C equilibrium. Therefore, the potential to use soil C sequestration to reduce overall GHG emissions is limited. The results showed a high potential to sequester C until 2050 but much lower rates in the second half of the century, highlighting the importance of using soil C sequestration in the coming decades to reach net zero by 2050.</p>


2018 ◽  
Author(s):  
Jacqueline R. England ◽  
Raphael Armando Viscarra Rossel

Abstract. Maintaining or increasing soil organic carbon (C) is important for securing food production, and for mitigating greenhouse gas (GHG) emissions, climate change and land degradation. Some land management practices in cropping, grazing, horticultural and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one needs measurements of soil organic C concentration, bulk density and gravel content, but using conventional laboratory-based analytical methods is expensive. Our aim here is to review the current state of proximal sensing for the development of new soil C accounting methods for emissions reporting and in emissions reduction schemes. We evaluated sensing techniques in terms of their rapidity, cost, accuracy, safety, readiness and their state of development. The most suitable technique for measuring soil organic C concentrations appears to be vis–NIR spectroscopy and for bulk density active gamma-ray attenuation. Sensors for measuring gravel have not been developed, but an interim solution with rapid wet-sieving and automated measurement appears useful. Field-deployable, multi-sensor systems are needed for cost-efficient soil C accounting. Proximal sensing can be used for soil organic C accounting, but the methods need to be standardised and procedural guidelines need to be developed to ensure proficient measurement and accurate reporting and verification. This is particularly important if the schemes use financial incentives for landholders to adopt management practices to sequester soil organic C. We list and discuss the requirements for the development of new soil C accounting methods that are based on proximal sensing, including requirements for recording, verification and auditing.


2021 ◽  
Vol 24 (2) ◽  
pp. 119-131
Author(s):  
MM Haque ◽  
MR Islam ◽  
MS Rahman ◽  
MAR Sarkar ◽  
MAA Mamun ◽  
...  

Nutrient management influences soil health and crop productivity. Sustained crop production re-quires specific nutrient management options after a certain period. The objectives of this investigation were to examine the effects of inorganic and organic fertilization on yields and soil carbon budget under rice based cropping patterns in Bangladesh. The research data and informationhave been gen-erated based on previouslypublished, unpublished sources and own concept.Omission of K or im-balanced K are more influential for reduction in grain yield up to 47% in Boro (dry) season but N was most limiting up to 35% in T. Aman (wet) season. With existing fertilizer rates for growing rice, the balances of N and K are always negative. Balanced chemical fertilizer (NPKSZn) can be an option for improving crop productivity and maintain soil quality. Net ecosystem carbon (C) balances are posi-tive when 3 t ha-1 cow dung (CD), 2 t ha-1 poultry manure (PM) and 2 t ha-1 vermicompost (VC) are used in combination with chemical fertilizers. Soil amendments with organic nutrient sources (rice straw, CD, PM, VC, legume crops) and rice based cropping patterns such as T. Aman-Mustard-Boro, Boro-Fallow-Fallow, Jute-T. Aman-Fallow, Wheat-Mungbean-T. Aman, Grass pea- T. Aus-T. Aman and Potato-Boro-T. Aman can be beneficial in improving soil C budget, soil nutrient ratio, total crop production and maintenance of environmental health that will meet SDGs goal. Bangladesh Rice J. 24 (2): 119-131, 2021


2021 ◽  
Author(s):  
Rose Abramoff ◽  
Bertrand Guenet ◽  
Haicheng Zhang ◽  
Katerina Georgiou ◽  
Xiaofeng Xu ◽  
...  

<p>Soil carbon (C) models are used to predict C sequestration responses to climate and land use change. Yet, the soil models embedded in Earth system models typically do not represent processes that reflect our current understanding of soil C cycling, such as microbial decomposition, mineral association, and aggregation. Rather, they rely on conceptual pools with turnover times that are fit to bulk C stocks and/or fluxes. As measurements of soil fractions become increasingly available, it is necessary for soil C models to represent these measurable quantities so that model processes can be evaluated more accurately. Here we present Version 2 (V2) of the Millennial model, a soil model developed in 2018 to simulate C pools that can be measured by extraction or fractionation, including particulate organic C, mineral-associated organic C, aggregate C, microbial biomass, and dissolved organic C. Model processes have been updated to reflect the current understanding of mineral-association, temperature sensitivity and reaction kinetics, and different model structures were tested within an open-source framework. We evaluated the ability of Millennial V2 to simulate total soil organic C (SOC), as well as the mineral-associated and particulate fractions, using three independent data sets of soil fractionation measurements spanning a range of climate and geochemistry in Australia (N=495), Europe (N=176), and across the globe (N=716). Considering RMSE and AIC as indices of model performance, site-level evaluations show that Millennial V2 predicts soil organic carbon content better than the widely-used Century model, despite an increase in process complexity and number of parameters. Millennial V2 also reproduces between-site variation in SOC across gradients of climate, plant productivity, and soil type. By including the additional constraints of measured soil fractions, we can predict site-level mean residence times similar to a global distribution of mean residence times measured using SOC/respiration rate under an assumption of steady state. The Millennial V2 model updates the conceptual Century model pools and processes and represents our current understanding of the roles that microbial activity, mineral association and aggregation play in soil C sequestration.</p>


2021 ◽  
Author(s):  
Rose Abramoff ◽  
Bertrand Guenet ◽  
Haicheng Zhang ◽  
Katerina Georgiou ◽  
Xiaofeng Xu ◽  
...  

<p>Soil carbon (C) models are used to predict C sequestration responses to climate and land use change. Yet, the soil models embedded in Earth system models typically do not represent processes that reflect our current understanding of soil C cycling, such as microbial decomposition, mineral association, and aggregation. Rather, they rely on conceptual pools with turnover times that are fit to bulk C stocks and/or fluxes. As measurements of soil fractions become increasingly available, soil C models that represent these measurable quantities can be evaluated more accurately. Here we present Version 2 (V2) of the Millennial model, a soil model developed to simulate C pools that can be measured by extraction or fractionation, including particulate organic C, mineral-associated organic C, aggregate C, microbial biomass, and dissolved organic C. Model processes have been updated to reflect the current understanding of mineral-association, temperature sensitivity and reaction kinetics, and different model structures were tested within an open-source framework. We evaluated the ability of Millennial V2 to simulate total soil organic C (SOC), as well as the mineral-associated and particulate fractions, using three soil fractionation data sets spanning a range of climate and geochemistry in Australia (N=495), Europe (N=176), and across the globe (N=730). Millennial V2 (RMSE = 1.98 – 4.76 kg, AIC = 597 – 1755) generally predicts SOC content better than the widely-used Century model (RMSE = 2.23 – 4.8 kg, AIC = 584 – 2271), despite an increase in process complexity and number of parameters. Millennial V2 reproduces between-site variation in SOC across a gradient of plant productivity, and predicts SOC turnover times similar to those of a global meta-analysis. Millennial V2 updates the conceptual Century model pools and processes and represents our current understanding of the roles that microbial activity, mineral association and aggregation play in soil C sequestration.</p>


Sign in / Sign up

Export Citation Format

Share Document