Surface charge characteristics and lime requirements of soils derived from basaltic, granite and metamorphic rocks in high rainfall tropical Queensland

Soil Research ◽  
1986 ◽  
Vol 24 (2) ◽  
pp. 173 ◽  
Author(s):  
GP Gillman ◽  
EA Sumpter

The cation and anion exchange capacities of a large number of soils formed on basaltic, granitic, and metamorphic parent materials in the high rainfall area (approximately 4000 mm) of tropical north Queensland have been examined. Aspects studied included the changes in CEC and AEC between pH 4 and pH 6, the relative amounts of permanent and variable charge over this pH range, and the lime requirements of these highly weathered soils. A distinction is made between the Total Cation Exchange Capacity (CECT), defined as the Ca + Al adsorbed, and the Basic Cation Exchange Capacity (CECB), which is the Ca adsorbed. At low pH, CECB may be much less than CECT. The CEC, increase with pH in the highly oxidic basaltic soils is largely due to changes in surface charge, while in the granitic and metamorphic soils, increasing occupation of exchange sites by Al as pH decreases is the factor responsible for the increase in CECB. A good estimation of CECB at soil pH is obtained with a previously described compulsive exchange method, and there is high correlation between CECT at soil pH and the Effective Cation Exchange Capacity (= Ca + Mg + K + Na + Al). The amount of lime required to raise soil pH to pH 5.5 in the granitic and metamorphic soils was equivalent to the amount of exchangeable Al, but in the basaltic soils the lime requirement was two to three times greater than the amount of exchangeable Al.


1969 ◽  
Vol 69 (3) ◽  
pp. 357-365
Author(s):  
Edmundo Rivera ◽  
José Rodríguez ◽  
Fernando Abruña

The effect of acidity factors of two Ultisols and one Oxisol on yield and foliar composition of tomatoes was determined. Yields were not markedly reduced by acidity in the Ultisols until pH dropped to around 4.6 with 45% Al saturation of the cation exchange capacity (CEC), and no yield was produced at about pH 4.1 and 80% Al saturation. In the Oxisol, tomato yields dropped steadily from 39.7 t/ha, when there was no exchangeable AI, to 17.5 t/ha at the highest level of acidity, pH 4.4 and 43% AI saturation. In all soils, yields were closely correlated with soil pH, exchangeable Al and Ca and Al/Ca.



Soil Research ◽  
1979 ◽  
Vol 17 (1) ◽  
pp. 129 ◽  
Author(s):  
GP Gillman

The 'compulsive exchange' method of Bascomb has been modified to allow the determination of cation exchange capacity and anion exchange capacity of soils containing significant quantities of constant potential surfaces. The soil is equilibrated with unbuffered barium chloride solution at an ionic strength approximating that of the soil solution, so that the conditions under which determinations are made are similar to those found in the field. Barium on the exchange complex is then replaced by magnesium when the latter is added as magnesium sulfate, and this is accomplished without altering the solution ionic strength. If desired, exchangeable basic cations can be determined as an additional step in the procedure. Results obtained by the proposed method are compared with other commonly used procedures for determining cation exchange capacity and exchangeable basic cations.



1987 ◽  
Vol 67 (1) ◽  
pp. 175-185 ◽  
Author(s):  
MARTIN DUQUETTE ◽  
WILLIAM H. HENDERSHOT

The cation and anion exchange capacities (CEC and AEC) as functions of pH were measured for 12 soil samples from various parts of Quebec. In addition to the index cation Ca, Al was measured in the replacing solutions in order to evaluate the contribution of Al to pH-dependent CEC at low pH. Although all of the soils possessed some pH-dependent CEC, the soils with the steepest rise in CEC with pH were those with the largest accumulation of sesquioxides. The effective CEC, measured at the soil pH, ranged from 2.4 to 37.2 cmol(+) kg−1 while the CEC at pH 7 minus the CEC at pH3 varied from 4.4 to 39.9 cmol(+) kg−1. The maximum amount of exchangeable Al was found to correlate very highly with the amount of amorphous inorganic Al in the samples. The inclusion of exchangeable Al in the calculation did not significantly reduce the amount of pH-dependent CEC measured for the soils. Key words: Effective CEC, permanent charge, pH-dependent CEC



1977 ◽  
Vol 57 (3) ◽  
pp. 233-247 ◽  
Author(s):  
ROGER W. BARIL ◽  
THI SEN TRAN

Correlations were made among chemical criteria used for taxonomic soil classificaton. The compared tests were: oxalate Δ (Fe + Al), pyrophosphate-extractable (Fe + Al), oxalate-extractable Al, pH-dependent cation exchange capacity (ΔCEC), ratios of pyrophosphate-extractable (Fe + Al) over clay or over dithionite-extractable (Fe + Al), and finally soil pH measured in 1 M NaF. Significant correlations were found among various measured parameters. However, no single test was found to be reliable as a single criterion when applied to the taxonomic classification of Quebec soils. The two chemical tests, pyrophosphate-extractable (Fe + Al) and its ratio over clay, combined with morphologic criteria appeared useful for classifying Quebec Podzols. A few soils, which presented discrepancies from chemical criteria were found difficult to classify, thus suggesting the possibility of establishing new sub-groups in the Canadain soil taxonomic classification system.



2017 ◽  
Vol 29 (2) ◽  
pp. 123-131
Author(s):  
Reshma Akter ◽  
Md Jamal Uddin ◽  
Md Faruque Hossain ◽  
Zakia Parveen

A study was carried out to evaluate the effects of brick manufacturing on phosphorus (P) and sulfur (S) concentrations in soil and plant collected from different distances of brick kilns in four AEZs of Bangladesh. Forty eight composite soil samples (0 - 15 cm depth) were collected from 48 points in 12 different sites at 0 m, 300 m, 800 m and 1500 m from brick kilns, where most (site 2, site 3, site 5, site 6, site 7, site 9 and site 10) of the brick kilns used coal for brick burning purposes. Plant samples (rice straw and different vegetables) were also collected from the respective fields except 0 m distances. Significantly (p ? 0.05) lower organic matter, cation exchange capacity, clay content and soil pH were found at 0 m distances compared to other distances. Highest concentration of total P in soil were recorded at 0 m distances and these concentrations decreased with increasing distances from the brick kilns in most of the sites; whereas available P is significantly lower at 0 m distances than that of other distances. Total and available concentration of S in soil followed the trend 0 m>300 m>800 m>1500 m. Maximum accumulation of P (69.15 mg kg-1) and S (0.14%) in plant was found at 800 m away from the brick kiln.Bangladesh J. Sci. Res. 29(2): 123-131, December-2016



2004 ◽  
Vol 18 (2) ◽  
pp. 243-247 ◽  
Author(s):  
Gregory W. Kerr ◽  
Phillip W. Stahlman ◽  
J. Anita Dille

Effects of soil pH and cation exchange capacity (CEC) on sunflower tolerance to sulfentrazone were investigated in a greenhouse study. Variables were soil pH (7.0, 7.3, 7.5, and 7.8), soil CEC (8.2, 13.7, 18.4, and 23.3 cmol/kg), and sulfentrazone rate (0, 105, 158, and 184 g ai/ha). Sulfentrazone-induced leaf chlorosis was affected by soil pH at 12 d after planting (DAP), but plants recovered, and earlier differences were not visible 9 d later. At 12 DAP, leaf chlorosis was 3 or 4% more severe in soils with pH 7.3 or higher compared with soils with pH 7.0 when averaged over both sulfentrazone rate and soil CEC. Leaf chlorosis resulting from sulfentrazone rates of 105, 158, and 184 g/ha was 17, 25, and 35% less at 23 cmol/kg than at 8.2 cmol/kg, respectively. Differences in chlorosis among sulfentrazone rates were greatest in soil with low CEC and lessened as soil CEC increased. Plants regained normal color over time, and newly emerging leaves were not affected. However, plant dry weights were reduced when sulfentrazone rate was ≥158 g/ha. Averaged over sulfentrazone rate and soil pH, sunflower dry weights were less when soil CEC was 8.2 compared with a CEC of 13.7 cmol/kg or higher, indicating a greater response at low CEC. Sunflower plant dry matter was not different in sulfentrazone-treated soil with a CEC above 13.7 cmol/kg. At the ranges tested, soil CEC had a considerably greater effect than did pH on sunflower tolerance to sulfentrazone.



Author(s):  
Resman ◽  
Sahta Ginting ◽  
Muhammad Tufaila ◽  
Fransiscus Suramas Rembon ◽  
Halim

The research aimed to determine the effectiveness of compost containing humic and fulvic acids, and pure humic and fulvic acids in increasing of Ultisol soil chemical properties. The research design used a randomized block design (RBD), consisting of 10 treatments, namely K0: 0 g polybag-1, KO1: 500 g polybag-1, KO2: 500 g polybag-1, KO3: 500 g polybag-1, KO4: 500 g polybag-1, KO5: 500 g polybag-1, KO6: 500 g polybag-1, KO7: 500 g of polybags-1, H: 50 g of polybag-1, A: 500 g polybag-1. Each treatment was repeated three times and obtained 30 treatment units. The results showed that pH H2O (K0: 4.49, KO1: 5.64, KO2: 5.47, KO3: 5.43, KO4: 5.51, KO5: 5.39, KO6: 5.48, KO7: 6.17, H: 5.06, F: 5.15), total-N (%) (K0: 0.13, KO1: 0.17, KO2: 0.18, KO3: 0.30, KO4: 0.25, KO5: 0.24, KO6: 0.29, KO7: 0.36, H: 0.16, F: 0.14), organic-C (%) (K0: 1.85, KO1; 2.30, KO2: 2.24, KO3: 2.33, KO4: 2.62, KO5: 2.25, KO6: 2.27, KO7: 2.95, H: 2.32, F: 2.26) , available-P (%) (K0: 2.75, KO1: 3.24, KO2: 3.16, KO3: 3.27, KO4: 3.57, KO5: 3.31, KO6: 3.37, KO7: 3.89, H: 3.10, F: 3.12), exchangeable-Al (me100g-1) (K0: 2.51, KO1: 2.11, KO2: 2.13, KO3: 2.15, KO4: 1.88, KO5: 2.14, KO6: 2.12, KO7: 1.75, H: 2.16, F: 2.17), base saturation (%) (K0: 30.91, KO1: 63.48, KO2: 52.63, KO3: 53.76, KO4: 56.13, KO5: 54.96, KO6: 56.71, KO7: 65.53, H: 39.11, F: 42.76), cation exchange capacity (me100g-1) (K0: 12.76, KO1: 15.64, KO2: 14.86, KO3: 14.35, KO4: 14.13, KO5: 15.01, KO6: 15.50, KO7: 17.94, H: 14.19, F: 13.73). The combined compost treatment of three types of organic matter (Imperata cylindrica + Rice straw + Glincidia sepium) is more effective in increasing the pH, H2O as 37.42%, total-N as 176.92%, Organic-C as 59.46%, available-P as 41.45%, base saturation as 65.53%, cation exchange capacity as 17.94% and exchangeable -Al, Alreduction as 30.28% of ultisol soil. KEY WORDS: compost, humic acid, fulvate, soil chemical, ultisol



2019 ◽  
Vol 8 (4) ◽  
pp. 61
Author(s):  
Nan Xu ◽  
Jehangir H. Bhadha ◽  
Abul Rabbany ◽  
Stewart Swanson

The addition of organic amendments and cover cropping on sandy soils are regenerative farming practices that can potentially enhance soil health. South Florida mineral soils present low soil quality due to their sandy texture and low organic matter (OM) content. Few studies have focused on evaluating the effects of farm-based management regenerative practices in this region. The objective of this study was to evaluate changes in soil properties associated with two regenerative farming practices - horse bedding application in combination with cover cropping (cowpea, Vigna unguiculata), compared to the practice of cover cropping only for two years. The soil quality indicators that were tested included soil pH, bulk density, water holding capacity, cation exchange capacity, OM, active carbon, soil protein and major nutrients (N, P, K). Results indicated no significant changes in soil pH, but a significant reduction in soil bulk density and a significant increase in maximum water holding capacity for both practices. Cation exchange capacity and the amounts of active carbon increased significantly after 1.5-year of the farming practices. Horse bedding application with cover cropping showed a significant 4% increase in OM during a short period. A significant increase in plant-available P was also observed under these two practices. Based on this study, horse bedding application as an organic amendment in conjunction with cover cropping provides an enhanced soil health effect compared to just cover cropping. As local growers explore farming option to improve soil health particularly during the fallow period using regenerative farming practices on sandy soils, these results will assist in their decision making.



1969 ◽  
Vol 68 (4) ◽  
pp. 413-422
Author(s):  
Fernando Abruña ◽  
Edmundo Rivera

Rice varieties IRS and Chontalpa 16 growing in two Ultisols with periodic overhead irrigation were quite tolerant to acidity producing around 80% of maximum yield at pH 4.8 and 30% Al saturation of the soils cation exchange capacity, a level common in Ultisols. However, maximum yields were obtained at pH 5.5 when no exchangeable Al was present in the soil. The Ca content of the leaves of both rice varieties decreased with decreasing pH and increasing Al saturation of the soils exchange capacity. Soil acidity factors in an Oxisol did not affect yields of the IRS variety, even at pH 4.5.



2011 ◽  
Vol 6 (3) ◽  
Author(s):  
J. Zake ◽  
J. Y. Z. Kitungulu ◽  
H. Busurwa ◽  
F. Kyewaze

Wetlands are not wastelands but wealth lands, which are widely distributed throughout Uganda currently covering 11% of the total land area. They are accessible to a large proportion of the population. As the country's population grows, people increasingly convert wetlands for other land uses such as farming, settlement among others thus making it difficult to enforce legislation for their protection, sustainable management and utilization. Their profound importance to both humans and wildlife calls for a concerted effort to ensure their sustainable utilization and attempts should be made to promote sustainable development of such wetlands with adequate considerations being given to human and environmental requirements. This study was therefore carried out to determine the effect of drainage on organic matter levels and on soil chemical changes in wetland soils in eastern Uganda around the Lake Victoria basin. Secondly, to assess potential lime requirements for drained wetland soils in eastern Uganda around the Lake Victoria basin, this would reflect on wetland soil buffering capacity. In green house studies it was found that drainage of wetland soils led to a reduction of organic matter relative to soil structure and where sulfur and iron were present in large amounts, drainage caused decrease in soil pH to moderately acidic levels; but in cases where exchangeable bases were present in large amounts there was an increase in soil pH. Lime requirements were greater where the amount of clay, organic matter and cation exchange capacity were high. Consequently, such wetland soils had a high buffering capacity. It was concluded that wetland soils should be characterized in terms of potential of acidification, level of organic matter, nutrient content, cation exchange capacity, soil texture and levels of trace elements. Decisions to drain or not to drain should depend on these parameters and other socio-economic considerations for the area.



Sign in / Sign up

Export Citation Format

Share Document