Reducing phosphorus leaching from sandy soils with red mud bauxite processing residues

Soil Research ◽  
1989 ◽  
Vol 27 (4) ◽  
pp. 651 ◽  
Author(s):  
S Vlahos ◽  
KJ Summers ◽  
DT Bell ◽  
RJ Gilkes

This study used field lysimeters to investigate the reduction in the leaching of phosphorus (P) applied as superphosphate fertilizer from a very sandy Swan Coastal Plain soil treated with bauxite processing residue (red mud) neutralized with either waste gypsum from the phosphate industry or ferrous sulfate (copperas) from the titanium dioxide industry. Addition of 500 t ha-' red mud/gypsum or 200 t hap1 red mud/copperas were found to reduce the leaching of P to below 3 kg ha-l for application rates of 270 and 80 kgP ha-1, respectively. Water retention from these excessively well drained soils was increased by 14 and 50% by the addition of 200 and 2000 t ha-l red mud, respectively. The pH of the leachate for all rates of red mud/copperas application increased from approximately 4 to range between 7 and 7-5. The concentrations of Na and SO4 were about 8 and 17 g1-l, respectively, in the initial leachates collected from the 2000 t ha-' red mud treatment but declined to approximately 0.4 and 2.0g l-1 after 3 years of leaching. The Ca leaching appeared to be initially controlled by the solubility of the excess CaSO4 remaining after red mud neutralization, with concentrations ranging between 0.3 and 0.5 g l-1 before declining to approximately the levels for untreated soils of 0.01-0.06g l-1. The Na, So4 and Ca concentrations in the leachates from the 500 t ha-l red mud/copperas treated soil decreased to acceptable levels after 2 years. High total soluble salt (TSS) levels associated with high levels of residue application may affect pasture production in the years immediately following soil amendment

Soil Research ◽  
1993 ◽  
Vol 31 (4) ◽  
pp. 533 ◽  
Author(s):  
KJ Summers ◽  
BH O'Connor ◽  
DR Fox

This paper reports on the gamma (�) radiation flux from sandy soils of the Swan Coastal Plain treated with bauxite residue/gypsum at various application rates and assesses the radiological significance of soil amendment in relation to currently accepted standards. Amendment rates of up to 2000 t ha-1 of bauxite residue were used. There is a linear increase of incremental � dose with increasing rate of residue. The 1 mSv limit for incremental � dose exposure for the general public is reached for 100% occupancy at an amendment rate of 1500 t ha-1 of bauxite residue. The gamma rate of approximately 0.15 �Gy h-1 is similar to that for soils of much of the area between Bunbury and Capel in the south-west of Western Australia and is significantly lower than levels for Minninup beach where there are deposits of mineral sands.


2010 ◽  
Vol 24 (3) ◽  
pp. 209 ◽  
Author(s):  
Michael G. Rix ◽  
Mark S. Harvey ◽  
J. Dale Roberts

South-western Western Australia is a biodiversity hotspot, with high levels of local endemism and a rich but largely undescribed terrestrial invertebrate fauna. Very few phylogeographic studies have been undertaken on south-western Australian invertebrate taxa, and almost nothing is known about historical biogeographic or cladogenic processes, particularly on the relatively young, speciose Quaternary sand dune habitats of the Swan Coastal Plain. Phylogeographic and taxonomic patterns were studied in textricellin micropholcommatid spiders belonging to the genus Raveniella Rix & Harvey. The Micropholcommatidae is a family of small spiders with a widespread distribution in southern Western Australia, and most species are spatially restricted to refugial microhabitats. In total, 340 specimens of Raveniella were collected from 36 surveyed localities on the Swan Coastal Plain and 17 non-Swan Coastal Plain reference localities in south-western Western Australia. Fragments from three nuclear rRNA genes (5.8S, 18S and ITS2), and one mitochondrial protein-coding gene (COI) were used to infer the phylogeny of the genus Raveniella, and to examine phylogeographic patterns on the Swan Coastal Plain. Five new species of Raveniella are described from Western Australia (R. arenacea, sp. nov., R. cirrata, sp. nov., R. janineae, sp. nov., R. mucronata, sp. nov. and R. subcirrata, sp. nov.), along with a single new species from south-eastern Australia (R. apopsis, sp. nov.). Four species of Raveniella were found on the Swan Coastal Plain: two with broader distributions in the High Rainfall and Transitional Rainfall Zones (R. peckorum Rix & Harvey, R. cirrata); and two endemic to the Swan Coastal Plain, found only on the western-most Quindalup dunes (R. arenacea, R. subcirrata). Two coastally restricted species (R. subcirrata, R. janineae) were found to be morphologically cryptic but genetically highly distinct, with female specimens morphologically indistinguishable from their respective sister-taxa (R. cirrata and R. peckorum). The greater Perth region is an important biogeographic overlap zone for all four Swan Coastal Plain species, where the ranges of two endemic coastal species join the northern and south-western limits of the ranges of R. peckorum and R. cirrata, respectively. Most species of Raveniella were found to occupy long, highly autapomorphic molecular branches exhibiting little intraspecific variation, and an analysis of ITS2 rRNA secondary structures among different species of Raveniella revealed the presence of an extraordinary hypervariable helix, ranging from 31 to over 400 nucleotides in length.


2006 ◽  
Vol 2006 (1) ◽  
pp. 1-4
Author(s):  
I. C. Lau ◽  
T. J. Cudahy ◽  
C.C.H. Ong ◽  
R.J.J. Vogwill ◽  
S. L. McHugh ◽  
...  

2017 ◽  
Vol 6 (4) ◽  
pp. 93
Author(s):  
Masauso Ndhlovu ◽  
Nicholas Kiggundu ◽  
Joshua Wanyama ◽  
Noble Banadda

Existing knowledge about biochar is derived from trials where biochar incorporation into the soil is done by hands, a practice too tedious to scale-up to commercial levels. To enhance scalability, biochar incorporation needs to be integrated into conventional mechanised tillage systems. This study aimed at assessing the effects of incorporating biochar by power tiller and ox-plough on soil water retention, maize growth and yield. A 2 x 3 factorial experiment was conducted in a split-plot design with biochar incorporating method as a main plot factor and biochar level as subplot factor, on ferralsols of central Uganda. Incorporation methods were by power tiller and ox-plough with hand mixing in planting basins as a control, while levels of biochar were 0 and 10 t ha-1 application rates. Data was analysed using two-way ANOVAs in Minitab for significant differences among incorporation methods. Results showed that incorporating biochar by power tiller significantly increased water retention effect of biochar by 27.5% (p < 0.05), while no significant effect was observed (p ≥ 0.05) when incorporated by ox-plough, compared to hand mixing. No significant difference on growth and yield was observed (p ≥ 0.05) as a result of incorporating biochar by power tiller and ox-plough instead of hands in planting basins. These findings suggest that biochar incorporation can be scaled-up, to commercial levels, through the use of power tiller and ox-plough, without negative effects on biochar performance. It is recommended that promotion of biochar technology encompasses the use of power tillers and ox-ploughs to enhance scalability. 


1996 ◽  
Vol 44 (4) ◽  
pp. 433 ◽  
Author(s):  
BL Shearer ◽  
M Dillon

Estimates of the susceptibility of plant species in Banksia woodland to Phytophthora cinnamomi Rands were obtained by determining the incidence of plant death and frequency of isolation of the pathogen, among species occurring in 46 disease centres on the Swan Coastal Plain south of Perth, Western Australia. In the disease centres, dicotyledons outnumbered monocotyledons. About half of all species occurring in the disease centres were from four families of dicotyledons, with the largest number of species from the Myrtaceae, Proteaceae and Papilionaceae. The greatest number of species of monocotyledons were from the Anthericaceae and Cyperaceae. No deaths were recorded for 47% of species found in three or more disease centres. These species were mainly from the Cyperaceae, Haemodoraceae, Myrtaceae and Papilionaceae. The species that tended to die frequently in disease centres were mainly from the Papilionaceae, Proteaceae, Epacridaceae, Xanthorrhoeaceae and the Zamiaceae. Phytophthora cinnamomi was isolated from 26 of the 95 species occurring in three or more disease centres. For most species, the frequency of isolation of P. cinnamomi from recently dead plants was much less than the frequency of dead plants sampled. Isolation from plants was less frequent than from adjacent soil. The pathogen was isolated from recently dead plants or soil mainly for species of the Proteaceae, Myrtaceae, Papilionaceae, Dasypogonaceae, Iridaceae and Xanthorrhoeaceae. Cross-tabulation of species by incidence of plant death and isolation of P. cinnamomi from plant and soil, provided the opportunity to classify the response of plant species to infection by P. cinnamomi.


1974 ◽  
Vol 14 (69) ◽  
pp. 547 ◽  
Author(s):  
EAN Greenwood ◽  
CAP Boundy ◽  
ESde Boer ◽  
TR Power

Maize was sown at 7.4, 12.4 and 17.3 seeds m-2 every 4 weeks for 12 months. The higher seeding rates gave similar yields; the low seeding rate frequently reduced yield. Dry matter yields of forage at the soft dough stage ranged from 200 g m-2 for crops planted in June to about 1400 g m-2 for crops planted between September and January. Grain yields followed a seasonal pattern similar to forage yields, with oven dry weights exceeding 800 g m-2 for crops sown between August and January inclusive. Crops sown in winter gave low yields because there were few surviving plants, few grains per cob and the grains were small. Crops sown later than February were killed by frost before maturity. Closer spacing resulted in small cobs with a few and smaller grains. Phenological phase lengths varied with planting time and could be estimated from the inverse of mean temperatures above a critical base as the predictor variable. It is concluded that the planting season for high production of maize on the Swan Coastal Plain extends from August to January and that two crops for silage, or one for grain and one for silage, could be grown in one year.


Sign in / Sign up

Export Citation Format

Share Document