Effects of incubation time and filtration technique on soil solution composition with particular reference to inorganic and organically complexed Al

Soil Research ◽  
1991 ◽  
Vol 29 (2) ◽  
pp. 223 ◽  
Author(s):  
NW Menzies ◽  
LC Bell ◽  
DG Edwards

Soil solutions were extracted from surface and subsoil samples of highly weathered soils in the field moist state and from air-dry samples which had been re-wet and incubated at 28�C for 1 to 64 days. Soil solutions were analysed following filtration through 0.22 pm and 0-025 �m pore-diameter hembranes. Selected samples were also incubated following sterilization by gamma irradiation (50 kGy) to investigate the effects of microorganisims on soil solution C dynamics. Ultra-filtration did not affect the concentration of the major cations or anions but significantly reduced Al, Fe, Mn, Si and organic C concentration in some surface soil solutions extracted from field-moist samples and from re-wet air-dry samples after short incubation periods. The organically-complexed Al concentration in soil solution was significantly increased by air-drying and re-wetting soil; the organic Al concentration decreased with increased time of incubation to levels comparable with that present in field-moist samples. Inorganic monomeric Al reached a stable concentration, comparable with that in field moist samples, when air-dry soils were re-wet and incubated for 1 day. While gamma irradiation effectively sterilized the soil and stabilized the concentration of Al and organic C in solution, the magnitude of the changes in soil solution composition observed as a result of irradiation diminish the value of this finding.

Soil Research ◽  
1985 ◽  
Vol 23 (2) ◽  
pp. 151 ◽  
Author(s):  
DC Edmeades ◽  
DM Wheeler ◽  
OE Clinton

In preliminary experiments a centrifuge method for extracting soil solutions was examined. Neither the time nor speed of centrifuging had any effect on the concentrations of cations in soil solution. The concentration of cations increased with decreasing soil moisture content, and NO3, Ca, Mg, and Na concentrations increased with increasing time of storage of freshly collected moist soils. It was concluded that to obtain soil solutions, which accurately reflect the soil solution composition and ionic strength (I) in situ, requires that soil samples are extracted immediately (<24 h) following sampling from the field. Prior equilibration of soil samples, to adjust soil moisture contents, is therefore not valid. The effect of time of sampling and soil type, and the effects of fertilizer and lime applications, on soil solution composition and ionic strength, were measured on freshly collected field moist topsoils. Concentrations of Ca, Mg, K, Na, NH, and NO, were lowest in the winter and highest in the summer. Consequently, there was a marked seasonal variation in ionic strength which ranged from 0.003 to 0.016 mol L-1 (mean, 0.005 s.d. 0.003) over time and soil type. Withholding fertilizer (P, K, S, Ca) for two years had only a minor effect on ionic composition and strength, and liming increased solution Ca, Mg and HCO3, but decreased Al, resulting in a twofold increase in ionic strength. These results suggest that the ionic strength of temperate grassland topsoils in New Zealand lie within the range 0.003-0.016 and are typically 0.005.


Soil Research ◽  
1988 ◽  
Vol 26 (3) ◽  
pp. 451 ◽  
Author(s):  
NW Menzies ◽  
LC Bell

Soil solutions were extracted by immiscible liquid displacement with trichlorotrifluoroethane and by centrifuge drainage from surface and subsoil samples having a wide range of chemical and physical properties. Extractions were performed on field-moist samples and on air-dry samples which were re-wetted to different matric suctions and for different lengths of time. The composition of the soil solution obtained was the same with both methods of extraction when samples had been pre-wet to a matric suction of 0-1 bar. Immiscible liquid displacement extracted solution from a krasnozem surface soil at suctions as great as 15 bar; in contrast, centrifuge drainage failed to extract solution from this soil at >3 bar. The concentration of ions in solutions extracted by displacement from soils with increasing matric suction rose to a far greater extent than that anticipated if concentration was the only mechanism operating. In re-wet air-dry samples, major cations and anions were at equilibrium levels in solution after incubation for 1 day; longer incubation times resulted in an artificial elevation of ionic strength through mineralization of organic matter in some surface samples. The levels achieved after 1 day were similar to those present in solutions extracted from field-moist samples.


Soil Research ◽  
1995 ◽  
Vol 33 (4) ◽  
pp. 689 ◽  
Author(s):  
PW Moody ◽  
DG Edwards ◽  
LC Bell

A layer of mono- or di-ammonium phosphate (MAP and DAP, respectively) was placed in contact for 5 days with duplicate columns of soil at a water content equivalent to 10 kPa matric suction. This was designed to simulate the effects of banded fertilizer on soil solution composition. Five soils were used: 0-10 cm samples from a Kurosol, a Ferrosol, a Vertosol and a Kandosol, and a 50-60 cm sample from the Kandosol. After the contact period, soil sections were recovered at successive 5 mm intervals from the fertilizer layer, the last section being 45-60 mm from the layer. Soybean (Glycine max (L.) Merr.) seedlings were grown for 48 h in each section and relative root elongation was determined. Soil solution was then extracted from each section and analysed. The amount of inorganic P in the soil solution (P-i) was summed over all soil sections for each soil and each P source and was found to be correlated with distance of P movement from the simulated band (r = 0 . 792, P < 0.01). Of several soil chemical parameters of the control (unfertilized) soils regressed against Pi, the following showed significant (P = 0.05) negative correlations: Ca and Mg concentrations in the soil solution for Pi from both MAP and DAP, exchangeable Ca and Mg for DAP, and citrate-dithionite extractable Fe and Al for MAP. These results suggest that adsorption (and possibly precipitation) reactions with Fe and Al hydrous oxides contributed to the removal of P-i from solution in the presence of MAP. However, with DAP as the fertilizer source, precipitation reactions involving Ca and Mg were the predominant factors. Dissolved organic C in the soil solution increased adjacent to both DAP and MAP, with larger amounts in proximity to DAP being a consequence of the higher soil solution pH (~ 7). Soil solution Si increased in all soils adjacent to both DAP and MAP, with concentrations being higher in the MAP treatments. Dissolution of aluminosilicates in the acidic conditions near MAP (pH ~5) was the probable cause. Relative root elongation (RRE) of soybean was restricted in soil sections close to the fertilizer. When RRE was plotted against each of soil solution EC, NH3 activity, and calcium activity ratio (CAR), a single curvilinear function described the relationship between RRE and CAR for all soils and both P sources. It is concluded that a salt-induced Ca deficiency was the cause of restricted root growth in proximity to DAP and MAP, rather than an osmotic effect or NH3 toxicity.


Soil Research ◽  
1985 ◽  
Vol 23 (2) ◽  
pp. 151
Author(s):  
DC Edmeades ◽  
DM Wheeler ◽  
OE Clinton

In preliminary experiments a centrifuge method for extracting soil solutions was examined. Neither the time nor speed of centrifuging had any effect on the concentrations of cations in soil solution. The concentration of cations increased with decreasing soil moisture content, and NO3, Ca, Mg, and Na concentrations increased with increasing time of storage of freshly collected moist soils. It was concluded that to obtain soil solutions, which accurately reflect the soil solution composition and ionic strength (I) in situ, requires that soil samples are extracted immediately (<24 h) following sampling from the field. Prior equilibration of soil samples, to adjust soil moisture contents, is therefore not valid. The effect of time of sampling and soil type, and the effects of fertilizer and lime applications, on soil solution composition and ionic strength, were measured on freshly collected field moist topsoils. Concentrations of Ca, Mg, K, Na, NH, and NO, were lowest in the winter and highest in the summer. Consequently, there was a marked seasonal variation in ionic strength which ranged from 0.003 to 0.016 mol L-1 (mean, 0.005 s.d. 0.003) over time and soil type. Withholding fertilizer (P, K, S, Ca) for two years had only a minor effect on ionic composition and strength, and liming increased solution Ca, Mg and HCO3, but decreased Al, resulting in a twofold increase in ionic strength. These results suggest that the ionic strength of temperate grassland topsoils in New Zealand lie within the range 0.003-0.016 and are typically 0.005.


Soil Research ◽  
1994 ◽  
Vol 32 (4) ◽  
pp. 847 ◽  
Author(s):  
CDA Mclay ◽  
GSP Ritchie ◽  
WM Porter ◽  
A Cruse

Two field trials were sampled to investigate the changes to soil solution chemical properties of a yellow sandplain soil with an acidic subsoil following the application of gypsum and lime to the soil surface in 1989. The soils were sandy textured and located in a region of low annual rainfall (300-350 mm). Soil was sampled annually to a depth of 1 m and changes in soil solution composition were estimated by extraction of the soil with 0.005 M KCl. Gypsum leaching caused calcium (Ca), sulfate (SO4) and the ionic strength to increase substantially in both topsoil and subsoil by the end of the first year. Continued leaching in the second year caused these properties to decrease by approximately one-half in the topsoil. Gypsum appeared to have minimal effect on pH or total Al (Al-T), although the amount of Al present as toxic monomeric Al decreased and the amount present as non-toxic AlSO+4 ion pairs increased. Magnesium (Mg) was displaced from the topsoil by gypsum and leached to a lower depth in the subsoil. In contrast, lime caused pH to increase and Al to decrease substantially in the topsoil, but relatively little change to any soil solution properties was observed in the subsoil. There was an indication that more lime may have leached in the presence of gypsum in the first year after application at one site. Wheat yields were best related to the soil acidity index Al-T/EC (where EC is electrical conductivity of a 1:5 soil:water extract), although the depth at which the relationship was strongest in the subsoil varied between sites. The ratio Al-T/EC was strongly correlated with the activity of monomeric Al species (i.e. the sum of the activities of Al3+, AlOH2+ and Al(OH)+2 in the soil solution. An increase in the concentration of sulfate in the subsoil solution (which increased the ionic strength, thereby decreasing the activity of Al3+, and also increased the amount of Al present as the AlSO+4 ion pair) was probably the most important factor decreasing Al toxicity to wheat. The results indicated that gypsum could be used to increase wheat growth in aluminium toxic subsoils in sandy soils of low rainfall regions and that a simple soil test could be used to predict responses.


2013 ◽  
Vol 59 (No. 8) ◽  
pp. 372-377 ◽  
Author(s):  
W. Szulc ◽  
B. Rutkowska

The determination of a range of boron concentration in the soil solution, evaluation of the effect of physico-chemical soil properties on boron concentration in the soil solution as well verification whether boron quantity in the soil solution is sufficient for nutritional needs of selected plants cultivated in Poland were comprised. Average boron concentration in the soil solution of Poland&rsquo;s cultivated soils ranges from 0.59 to 5.07 &micro;mol/L and is differentiated by physico-chemical properties of soil. Taking into account decreasing effects of soil properties on the increase of boron concentration in the soil solution, the soil properties can be arranged as follows: organic C &gt;<br />soil abundance in available boron &gt; soil texture &gt; soil pH. The minimum boron quantity observed in the soil solution of Poland&rsquo;s cultivated soils was not sufficient to fulfil nutritional needs of the plants. The maximum boron quantity observed secured nutritional needs of cereals and potatoes but not those of rape plants and sugar beets. Based on the study it can be concluded that the measurement of the concentration of boron in the soil solution can be used in the diagnosis of deficiency of this element for crops.


2011 ◽  
Vol 148-149 ◽  
pp. 977-982
Author(s):  
Dao Xi Li

To examine how the dissolved CH4 in soil solution would affect the CH4 emission from rice field, fluxes of CH4 emission were measured by using a manually closed static chamber-gas chromatography method, and the dissolved CH4 in soil solution was obtained through shaking soil solutions, which were extracted from different paddy soil layers by a soil solution sampler with suction and pressure. The results show that the CH4 fluxes from rice fields and the concentration of dissolved CH4 in soil solution are both reduced significantly under the water-saving irrigation as compared to the traditional flooded irrigation. Under the water-saving irrigation, naturally receding water-layer during the early stage leads to an earlier peak of CH4 flux, but dramatically reduces the concentration of dissolved CH4 in soil solution. The maximum concentration is shifted to about 20-cm depth soil layers, and the relationship between CH4 emissions and dissolved CH4 in soil solution can be estimated using an exponential function of dissolved CH4 in soil solution at the depth of about 20 cm (R2=0.89, p4 in soil solution plays a more dominant role in CH4 emission under the water-saving irrigation than that under continuously flooded irrigation.


Sign in / Sign up

Export Citation Format

Share Document