Evaluation of the influence of sample preparation and extraction technique on soil solution composition

Soil Research ◽  
1988 ◽  
Vol 26 (3) ◽  
pp. 451 ◽  
Author(s):  
NW Menzies ◽  
LC Bell

Soil solutions were extracted by immiscible liquid displacement with trichlorotrifluoroethane and by centrifuge drainage from surface and subsoil samples having a wide range of chemical and physical properties. Extractions were performed on field-moist samples and on air-dry samples which were re-wetted to different matric suctions and for different lengths of time. The composition of the soil solution obtained was the same with both methods of extraction when samples had been pre-wet to a matric suction of 0-1 bar. Immiscible liquid displacement extracted solution from a krasnozem surface soil at suctions as great as 15 bar; in contrast, centrifuge drainage failed to extract solution from this soil at >3 bar. The concentration of ions in solutions extracted by displacement from soils with increasing matric suction rose to a far greater extent than that anticipated if concentration was the only mechanism operating. In re-wet air-dry samples, major cations and anions were at equilibrium levels in solution after incubation for 1 day; longer incubation times resulted in an artificial elevation of ionic strength through mineralization of organic matter in some surface samples. The levels achieved after 1 day were similar to those present in solutions extracted from field-moist samples.

Soil Research ◽  
1991 ◽  
Vol 29 (2) ◽  
pp. 223 ◽  
Author(s):  
NW Menzies ◽  
LC Bell ◽  
DG Edwards

Soil solutions were extracted from surface and subsoil samples of highly weathered soils in the field moist state and from air-dry samples which had been re-wet and incubated at 28�C for 1 to 64 days. Soil solutions were analysed following filtration through 0.22 pm and 0-025 �m pore-diameter hembranes. Selected samples were also incubated following sterilization by gamma irradiation (50 kGy) to investigate the effects of microorganisims on soil solution C dynamics. Ultra-filtration did not affect the concentration of the major cations or anions but significantly reduced Al, Fe, Mn, Si and organic C concentration in some surface soil solutions extracted from field-moist samples and from re-wet air-dry samples after short incubation periods. The organically-complexed Al concentration in soil solution was significantly increased by air-drying and re-wetting soil; the organic Al concentration decreased with increased time of incubation to levels comparable with that present in field-moist samples. Inorganic monomeric Al reached a stable concentration, comparable with that in field moist samples, when air-dry soils were re-wet and incubated for 1 day. While gamma irradiation effectively sterilized the soil and stabilized the concentration of Al and organic C in solution, the magnitude of the changes in soil solution composition observed as a result of irradiation diminish the value of this finding.


Soil Research ◽  
1999 ◽  
Vol 37 (5) ◽  
pp. 993 ◽  
Author(s):  
H. J. Percival ◽  
T. W. Speir ◽  
A. Parshotam

The soil solution chemistry of heavy metal amended soils is of great importance in assessing the bioavailability of heavy metals and their toxicity to the soil biota. Three contrasting soils were amended with Cd(II), Cu(II), Ni(II), Pb(II), Zn(II), and Cr(III) nitrate salts at rates of 10–100 mmol/kg. This concentration range was chosen to encompass a wide range of effects on sensitive soil biochemical properties as part of a larger project. Soil solutions were extracted and analysed for pH, and for concentrations of heavy metals, and major cations and anions. Heavy metal speciation was calculated with the GEOCHEM-PC model. Heavy metal concentrations in the soil solutions increased both in absolute terms and as a percentage of added heavy metal as amendment rates increased. This observation is due to decreasing specific adsorption (caused by decreasing pH induced by the amendments), and to increasing saturation of cation exchange sites. For all 3 soils, the percentage increase commonly follows the order Cr(III) < Pb < Cu < Ni < Cd < Zn. The percentage of each metal held in the soil solution increased from soil to soil as cation exchange capacity, and therefore sorptivity, decreased. Both the concentration and activity of free heavy metal ions were substantially lower than the corresponding total metal concentration. This was ascribed to ion-pairing of metal ions with anions, particularly nitrate introduced in the amending solutions, as well as to increases in ionic strength as a result of amendment. Metal-anion species were mainly inorganic but where Cu and Pb were relatively low in concentration because of strong adsorption by the soils, organic complexation was likely to be significant. Speciation trends were similar for the 3 soils but different in magnitude.


2019 ◽  
Vol 40 ◽  
pp. 73-77
Author(s):  
Bhojraj Bhandari ◽  
Bhadra Prasad Pokheral

Ceramic materials display a wide range of properties that facilitate their use in many different product areas. Currently, there has been keen interest in the field of ceramic materials due to their excellent mechanical and physical properties. Barium Stannate Titanate (BST) is a binary solid solution system composed of ferroelectric Barium titanate and non-ferroelectric barium titanate. In this study, the phase transition behavior of (Ba1-xSnx)TiO3 (x = 0.5) (BST) ceramics  was obtained by the dry-route method. The previous studies were based on Sn 2+ on the Ti site with varying values of x. The powders after calcination are compacted in the form of pellets using a hydraulic press at an optimized load above 70KN. The experimental density of our sample measured by liquid displacement method with glycerin was lower than theoretical density, giving the shape is highly dense with low porosity. The structure shows that on increasing the Sn2+ content volume decreases due to the size of Sn2+, which is smaller than that of Ba2+, in comparison to BaTiO3. As the demand of lead-free environment-friendly sensor is increasing, thus obtained BST has great applications as a sensor material in modern electronic devices.


2011 ◽  
Vol 148-149 ◽  
pp. 977-982
Author(s):  
Dao Xi Li

To examine how the dissolved CH4 in soil solution would affect the CH4 emission from rice field, fluxes of CH4 emission were measured by using a manually closed static chamber-gas chromatography method, and the dissolved CH4 in soil solution was obtained through shaking soil solutions, which were extracted from different paddy soil layers by a soil solution sampler with suction and pressure. The results show that the CH4 fluxes from rice fields and the concentration of dissolved CH4 in soil solution are both reduced significantly under the water-saving irrigation as compared to the traditional flooded irrigation. Under the water-saving irrigation, naturally receding water-layer during the early stage leads to an earlier peak of CH4 flux, but dramatically reduces the concentration of dissolved CH4 in soil solution. The maximum concentration is shifted to about 20-cm depth soil layers, and the relationship between CH4 emissions and dissolved CH4 in soil solution can be estimated using an exponential function of dissolved CH4 in soil solution at the depth of about 20 cm (R2=0.89, p4 in soil solution plays a more dominant role in CH4 emission under the water-saving irrigation than that under continuously flooded irrigation.


1976 ◽  
Vol 27 (3) ◽  
pp. 441 ◽  
Author(s):  
HR Jitts ◽  
A Morel ◽  
Y Saijo

Primary production was measured at 14 stations covering a wide range of oceanic waters. Measurements were made by both the in situ method (Pi) and the simulated in situ method (Ps) Production v. constant irradiance (P v. I) was also measured. Available photosynthetic irradiance [Eq(350-700) in quanta m-2 s-1] was calculated from continuous records of total irradiance and measurements of the percentage submarine transmission of irradiance were made with a quantum meter. Using the P v. I curves and Eq(350-700), primary production at several depths at each station was calculated (P,). Pc was shown to be a precise estimate of Ps at all depths. Pc was also highly correlated with Pi, but both Pc and Pi overestimated Pi at the surface by 40 %. Some experiments at three stations showed that a 2-mm thickness of clear glass placed over surface samples in the measurement of Ps could increase Ps by about 50%. This suggested that U.V. irradiance in surface ocean waters decreased Pi and could explain the overestimates by Pc and Ps. The results showed the need for precise information of spectrai composition of irradiance in studies of primary production but demonstrated the kalidity of Eq(350-700) as an estimate of available photosynthetic irradiance. They also showed that Pc could estimate Pi with a high degree of precision, and that such a calculative method could provide a useful way of continuously monitoring the primary production of large bodies of water for extended periods.


Soil Research ◽  
1997 ◽  
Vol 35 (1) ◽  
pp. 183 ◽  
Author(s):  
M. J. McLaughlin ◽  
K. G. Tiller ◽  
M. K. Smart

Fifty commercial potato crops and associated soils were sampled. Soil solutions were extracted from rewetted soils by centrifugation, and solution composition was related to Cd concentrations in tubers. Soils were also extracted with 0·01 M Ca(NO3)2 and 0·01 M CaCl2 solutions, and Cd2+ activities in the extracts were calculated by difference using the stability constants for formation of CdCl2-nn species. The soils had saline solutions (>4 dS/m), and Cl- and SO2-4 in solution markedly affected the speciation of Cd in soil solution, with chloro-complexes, in particular, dominating. While low soil pH was associated with high (>25 nM) concentrations of Cd in soil solution, chloro-complexation also led to high concentrations of Cd in solution, even at neutral to alkaline soil pH values. Tuber Cd concentrations were not related to activities of Cd2+ in soil solution or to activities in dilute salt extracts of soil. Tuber Cd concentrations were related to the degree of chloro-complexation of Cd in solution. The relationship of tuber Cd concentrations to chloro-complexation in soil solution suggests that Cd species other than the free Cd2+ ion are involved in the transport through soil and uptake of Cd by plants.


Soil Research ◽  
2001 ◽  
Vol 39 (5) ◽  
pp. 1003 ◽  
Author(s):  
M. L. Adams ◽  
M. R. Davis ◽  
K. J. Powell

The impact of land use change from grassland to conifer forest on the aluminium (Al) concentrations in soils and soil solutions was examined. Soils from grassland were compared with those from adjoining 15–19-year old forest stands at 3 contrasting pairs of sites in South Island, New Zealand. The site pairs were on a terrace [Pinus nigra/P. ponderosa, and grassland (CP)], and a hill slope [Pseudotsuga menziesii and grassland (CF)] in the Craigieburn range, Canterbury, and a hill slope in the Lammerlaw Range, Otago [P. radiata and grassland (LP)]. The sites had never been cultivated or fertilised, and for each pair the forest and grassland were similar in terms of soil and topography. The 1 M KCl exchangeable and 0.02 M CaCl 2 extractable Al levels at 0–10 cm were higher in forest than in grassland topsoil at CP and LP (P < 0.01). In soil solutions there was a trend for both ‘reactive Al’ and Al bound in labile organic complexes to be higher in forest soil at all sites, but site-pair differences were only significant at LP, and only for ‘reactive Al’. The increase in ‘reactive Al’ at this site was linked to the low pH and low base saturation. The ratios of exchangeable and soil solution Ca 2+ and Mg 2+ to ‘reactive Al’ were substantially lower in forest than grassland soils at all sites. Aluminium complexation capacity (Al-CC) values at all sites were higher in forest soil solutions than in grassland soil solutions. For the grassland and forest sites at LP, the Al-CC correlated strongly with the amount of soluble fulvic and humic matter present, as estimated from soil solution UV absorbance at 250 nm. In soils with the lowest percentage base saturation and buffering capacity (LP), afforestation of pastoral grassland with Pinus radiata significantly reduced soil pH and base cation levels, while increasing both soil and soil solution Al concentrations. Under such conditions (base saturation <20%), the increase in ‘reactive Al’ concentrations in soil solutions under fast growing conifer tree species may be sufficient to affect Mg uptake.


1962 ◽  
Vol 2 (02) ◽  
pp. 156-164 ◽  
Author(s):  
H.D. Outmans

Abstract In steady vertical flow, the interface of an immiscible liquid-liquid displacement is horizontal for any flow rate below the critical in non-vertical flow, however, the shape of the interface in the steady state does depend on the flow rate, and the purpose of this paper is to calculate the unsteady interfaces during the transition of one steady state of flow to another. A knowledge of these transient interfaces is of considerable importance in reservoir engineering where the calculation of breakthrough recovery depends on the instant the interface reaches the producing wells and on the shape of the interface at that time. Although the emphasis is put on transient interfaces, which eventually approach stable equilibrium, it is shown that if the displacement exceeds a critical rate no equilibrium is possible. The interface is then unstable and viscous fingers are formed during the displacement. The critical rate and the shape of the transient and equilibrium interfaces are affected by the effective interfacial tension; but since this effective inter facial tension appears in the calculations only in combination with the in verse square of the thickness of the medium, its effect in the reservoir would appear to be negligible compared to its significance in model experiments. Introduction Stability criteria and the early growth of interfacial disturbances in a plane parallel to the boundaries of a dipping formation in which oil is displaced by an incompressible fluid were described in a previous paper. This type of instability is significant in thin reservoirs. However, if the reservoir has appreciable thickness, then interfacial stability in vertical planes, normal to the upper and lower boundaries, also becomes important (the displacement is supposed to be parallel to these vertical planes). The difference between the two stability problems is that, in the first case, the intersections of the interface with planes parallel to the boundaries are normal to the direction of the displacement; in the second case, the intersections, this time with vertical planes, are not normal to the displacement. Instead, they are tilted at an angle which depends on the displacement rate. The tilt of steady interfaces was calculated by Dietz who also determined the critical rate of displacement for stability in the vertical plane by assuming that this rate would coincide with an interfacial tilt equal to the dip of the formation. The critical rate thus calculated is the same as has been found for thin reservoirs (see Eq. 1.1 of Ref. 1 and of the present paper). Dietz's calculation of the stable tilt was verified by laboratory experiments and the agreement was found to be fairly good. It is doubtful, however, that stable tilts actually exist in the reservoir because a change in production rate is not followed by an instantaneous adjustment of the interface to the new rate but, rather, by a transition period during which the interface changes from one equilibrium tilt to the other. The principal objective of this paper has been to describe these transient interfaces without putting any restrictions on the flow conditions or the shape of the interface, as had been done previously. The second objective was to compute the critical velocity, taking into account capillary effects, and the third was to evaluate, at least qualitatively, the shape of the front at rates above the critical, again without making the simplifying assumptions introduced by previous investigators. In the following sections two examples are given of the calculation of interfacial motion. The first describes this motion for an initially horizontal interface in a dipping layer, and the second for a vertical interface in a horizontal layer. The mathematical formulation of the problem is non linear in the boundary conditions, and this prohibits its solution in closed form. Instead, the solution is obtained in the form of higher-order approximations. SPEJ P. 156^


Sign in / Sign up

Export Citation Format

Share Document