Changing fuel management strategies - The challenge of meeting new information and analysis needs

2001 ◽  
Vol 10 (4) ◽  
pp. 267 ◽  
Author(s):  
Susan G. Conard ◽  
Timothy Hartzell ◽  
Michael W. Hilbruner ◽  
G. Thomas Zimmerman

This paper was presented at the conference ‘Integrating spatial technologies and ecological principles for a new age in fire management’, Boise, Idaho, USA, June 1999 ‘The earth, born in fire, baptized by lightning since before life"s beginning, has been and is a fire planet.’ E.V. Komarek Attitudes and policies concerning wildland fire, fire use, and fire management have changed greatly since early European settlers arrived in North America. Active suppression of wildfires accelerated early in the 20th Century, and areas burned dropped dramatically. In recent years, burned areas and cost of fires have begun to increase, in part due to fuel buildups resulting from fire suppression. The importance of fire as an ecosystem process is also being increasingly recognized. These factors are leading to changes in Federal agency fire and fuels management policies, including increased emphasis on use of prescribed fire and other treatments to reduce fuel loads and fire hazard. Changing fire management strategies have highlighted the need for better information and improved risk analysis techniques for setting regional and national priorities, and for monitoring and evaluating the ecological, economic, and social effects and tradeoffs of fuel management treatments and wildfires. The US Department of Interior and USDA Forest Service began the Joint Fire Science Program in 1998 to provide a sound scientific basis for implementing and evaluating fuel management activities. Development of remote sensing and GIS tools will play a key role in enabling land managers to evaluate hazards, monitor changes, and reduce risks to the environment and the public from wildland fires.

2020 ◽  
Vol 29 (10) ◽  
pp. 857 ◽  
Author(s):  
Jesse D. Young ◽  
Alexander M. Evans ◽  
Jose M. Iniguez ◽  
Andrea Thode ◽  
Marc D. Meyer ◽  
...  

In 2009, new guidance for wildland fire management in the United States expanded the range of strategic options for managers working to reduce the threat of high-severity wildland fire, improve forest health and respond to a changing climate. Markedly, the new guidance provided greater flexibility to manage wildland fires to meet multiple resource objectives. We use Incident Status Summary reports to understand how wildland fire management strategies have differed across the western US in recent years and how management has changed since the 2009 Guidance for Implementation of Federal Wildland Fire Management Policy. When controlling for confounding variation, we found the 2009 Policy Guidance along with other concurrent advances in fire management motivated an estimated 27 to 73% increase in the number of fires managed with expanded strategic options, with only limited evidence of an increase in size or annual area burned. Fire weather captured a manager’s intent and allocation of fire management resources relative to burning conditions, where a manager’s desire and ability to suppress is either complemented by fire weather, at odds with fire weather, or put aside due to other priorities. We highlight opportunities to expand the use of strategic options in fire-adapted forests to improve fuel heterogeneity.


2005 ◽  
Vol 156 (9) ◽  
pp. 331-337
Author(s):  
Marco Conedera ◽  
Patrick Roth ◽  
Gabriele Corti ◽  
Daniele Ryser

Fire-services are often unable to obtain a rapid overview of problems connected with wildfire fighting. In the last few decades the ideology for fire fighting has shifted from fire control(basically fire suppression) to fire management (including prevention,planning, and simulating). As a result, fire management is now included in landscape planning processes. The preliminary step in fire management is fire risk analysis, which takes into account fire hazard (probability and expected severity of a fire) and the outcome (total impact on the affected environment). In this contribution we present an approach for assessing fire risk on local levels in southern Switzerland.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 507
Author(s):  
Wenyuan Ma ◽  
Zhongke Feng ◽  
Zhuxin Cheng ◽  
Shilin Chen ◽  
Fengge Wang

Reasonable forest fire management measures can effectively reduce the losses caused by forest fires and forest fire driving factors and their impacts are important aspects that should be considered in forest fire management. We used the random forest model and MODIS Global Fire Atlas dataset (2010~2016) to analyse the impacts of climate, topographic, vegetation and socioeconomic variables on forest fire occurrence in six geographical regions in China. The results show clear regional differences in the forest fire driving factors and their impacts in China. Climate variables are the forest fire driving factors in all regions of China, vegetation variable is the forest fire driving factor in all other regions except the Northwest region and topographic variables and socioeconomic variables are only the driving factors of forest fires in a few regions (Northwest and Southwest regions). The model predictive capability is good: the AUC values are between 0.830 and 0.975, and the prediction accuracy is between 70.0% and 91.4%. High fire hazard areas are concentrated in the Northeast region, Southwest region and East China region. This research will aid in providing a national-scale understanding of forest fire driving factors and fire hazard distribution in China and help policymakers to design fire management strategies to reduce potential fire hazards.


2018 ◽  
Vol 185 (1) ◽  
pp. 10-22 ◽  
Author(s):  
Ludivine Eloy ◽  
Bibiana A. Bilbao ◽  
Jayalaxshmi Mistry ◽  
Isabel B. Schmidt

1992 ◽  
Vol 2 (3) ◽  
pp. 123 ◽  
Author(s):  
RHD McRae

A method for handling lightning-caused ignitions as part of a comprehensive fire hazard assessment procedure is presented. The locations at which lightning ignitions tend to occur have always been difficult to predict, and do not correlate with usual environmental factors. The model described here uses geographic information system techniques to remove large-scale trends in elevation. The meso-scale residual can be used to predict sites that are prone to lightning ignitions. The model is compared to historic records of lightning ignitions for the ACT, and is found to work very well. A range of other uses for the technique in fire management are discussed.


2020 ◽  
Vol 29 (11) ◽  
pp. 974
Author(s):  
William Nikolakis ◽  
Emma Roberts ◽  
Ngaio Hotte ◽  
Russell Myers Ross

After generations of fire-suppression policy, Indigenous fire management (IFM) is being reactivated as one way to mitigate wildfire in fire-prone ecosystems. Research has documented that IFM also mitigates carbon emissions, improves livelihoods and enhances well-being among participants. This study documents the goals of the Yunesit’in and Xeni Gwet’in First Nations as they develop a fire management program in central British Columbia, Canada. Drawing on goal setting theory and interviews, a qualitative coding and cluster analysis identified three general goals from fire management: (1) strengthen cultural connection and well-being, (2) restore the health of the land and (3) respect traditional laws. Sub-goals included enhancing community member health and well-being, improving fire management practices to maintain ‘pyrodiversity’ and food security and re-empowering Indigenous laws and practices. This community-developed framework will guide program evaluation and brings insight to a theory of IFM.


2007 ◽  
Vol 16 (4) ◽  
pp. 378 ◽  
Author(s):  
Noel Preece

Landscape fires are common and frequent across the north Australian savannas, and are arguably an essential component of regional ecosystem dynamics. Seasonal biases in fire regimes and the high frequency of late dry season fires in a large proportion of the region have been presented as an impediment to appropriate land management. Legislation regulating the lighting of fires applies to the whole of the savannas. The legislation seeks to control the lighting of fires, provides for permit systems to operate in each jurisdiction, and is supported by policies and guidance manuals. The present paper argues that the legislation fails to address prescribed burning, the biophysical and social realities of contemporary regimes, and management needs. The policies and legislation are in need of some fundamental changes, including recognition of the concept of prescribed burning, mechanisms to promote regional fire management strategies and plans, and recognition of indigenous traditional practices.


2006 ◽  
Vol 234 ◽  
pp. S265
Author(s):  
A. Couto-Vázquez ◽  
J. Mahía ◽  
M. Díaz-Raviña ◽  
T. Carballas ◽  
S.J. González-Prieto

Sign in / Sign up

Export Citation Format

Share Document