scholarly journals Rekindle dynamics: validating the pressure on wildland fire suppression resources and implications for fire management in Portugal

Author(s):  
A. P. Pacheco ◽  
J. Claro ◽  
T. Oliveira
2001 ◽  
Vol 10 (4) ◽  
pp. 267 ◽  
Author(s):  
Susan G. Conard ◽  
Timothy Hartzell ◽  
Michael W. Hilbruner ◽  
G. Thomas Zimmerman

This paper was presented at the conference ‘Integrating spatial technologies and ecological principles for a new age in fire management’, Boise, Idaho, USA, June 1999 ‘The earth, born in fire, baptized by lightning since before life"s beginning, has been and is a fire planet.’ E.V. Komarek Attitudes and policies concerning wildland fire, fire use, and fire management have changed greatly since early European settlers arrived in North America. Active suppression of wildfires accelerated early in the 20th Century, and areas burned dropped dramatically. In recent years, burned areas and cost of fires have begun to increase, in part due to fuel buildups resulting from fire suppression. The importance of fire as an ecosystem process is also being increasingly recognized. These factors are leading to changes in Federal agency fire and fuels management policies, including increased emphasis on use of prescribed fire and other treatments to reduce fuel loads and fire hazard. Changing fire management strategies have highlighted the need for better information and improved risk analysis techniques for setting regional and national priorities, and for monitoring and evaluating the ecological, economic, and social effects and tradeoffs of fuel management treatments and wildfires. The US Department of Interior and USDA Forest Service began the Joint Fire Science Program in 1998 to provide a sound scientific basis for implementing and evaluating fuel management activities. Development of remote sensing and GIS tools will play a key role in enabling land managers to evaluate hazards, monitor changes, and reduce risks to the environment and the public from wildland fires.


Author(s):  
Douglas G. Woolford ◽  
David L. Martell ◽  
Colin McFayden ◽  
Jordan Evens ◽  
Aaron Stacey ◽  
...  

We describe the development and implementation of an operational human-caused wildland fire occurrence prediction (FOP) system in the Province of Ontario, Canada. A suite of supervised statistical learning models was developed using more than 50 years of high-resolution data over a 73.8 million hectare study area, partitioned into Ontario’s Northwest and Northeast Fire Management Regions. A stratified modelling approach accounts for different seasonal baselines regionally and for a set of communities in the far north. Response-dependent sampling and modelling techniques using logistic Generalized Additive Models are used to develop a fine-scale, spatio-temporal FOP system with models that include non-linear relationships with key predictors. These predictors include inter and intra-annual temporal trends, spatial trends, ecological variables, fuel moisture measures, human land use characteristics and a novel measure of human activity. The system produces fine-scale, spatially explicit maps of daily probabilistic human-caused FOP based on locally observed conditions along with point and interval predictions for the expected number of fires in each region. A simulation-based approach for generating the prediction intervals is described. Daily predictions were made available to fire management practitioners through a custom dashboard and integrated into daily regional planning to support detection and fire suppression preparedness needs.


2017 ◽  
Vol 26 (7) ◽  
pp. 562 ◽  
Author(s):  
Matthew P. Thompson ◽  
Francisco Rodríguez y Silva ◽  
David E. Calkin ◽  
Michael S. Hand

Characterising the impacts of wildland fire and fire suppression is critical information for fire management decision-making. Here, we focus on decisions related to the rare larger and longer-duration fire events, where the scope and scale of decision-making can be far broader than initial response efforts, and where determining and demonstrating efficiency of strategies and actions can be particularly troublesome. We organise our review around key decision factors such as context, complexity, alternatives, consequences and uncertainty, and for illustration contrast fire management in Andalusia, Spain, and Montana, USA. Two of the largest knowledge gaps relate to quantifying fire impacts to ecosystem services, and modelling relationships between fire management activities and avoided damages. The relative magnitude of these and other concerns varies with the complexity of the socioecological context in which fire management decisions are made. To conclude our review, we examine topics for future research, including expanded use of the economics toolkit to better characterise the productivity and effectiveness of suppression actions, integration of ecosystem modelling with economic principles, and stronger adoption of risk and decision analysis within fire management decision-making.


1994 ◽  
Vol 24 (6) ◽  
pp. 1253-1259 ◽  
Author(s):  
Romain Mees ◽  
David Strauss ◽  
Richard Chase

We describe a model that estimates the optimal total expected cost of a wildland fire, given uncertainty in both flame length and fire-line width produced. In the model, a sequence of possible fire-line perimeters is specified, each with a forecasted control time. For a given control time and fire line, the probability of containment of the fire is determined as a function of the fire-fighting resources available. Our procedure assigns the resources to the fire line so as to minimize the total expected cost. A key feature of the model is that the probabilities reflect the degree of uncertainty in (i) the width of fire line that can be built with a given resource allocation, and (ii) the flame length of the fire. The total expected cost associated with a given choice of fire line is the sum of: the loss or gain of value of the area already burned; the cost of the resources used in the attack; and the expected loss or gain of value beyond the fire line. The latter is the product of the probability that the chosen attack strategy fails to contain the fire and the value of the additional burned area that would result from such a failure. The model allows comparison of the costs of the different choices of fire line, and thus identification of the optimal strategy. A small case study is used to illustrate the procedure.


2010 ◽  
Vol 19 (2) ◽  
pp. 238 ◽  
Author(s):  
William E. Mell ◽  
Samuel L. Manzello ◽  
Alexander Maranghides ◽  
David Butry ◽  
Ronald G. Rehm

Wildfires that spread into wildland–urban interface (WUI) communities present significant challenges on several fronts. In the United States, the WUI accounts for a significant portion of wildland fire suppression and wildland fuel treatment costs. Methods to reduce structure losses are focussed on fuel treatments in either wildland fuels or residential fuels. There is a need for a well-characterised, systematic testing of these approaches across a range of community and structure types and fire conditions. Laboratory experiments, field measurements and fire behaviour models can be used to better determine the exposure conditions faced by communities and structures. The outcome of such an effort would be proven fuel treatment techniques for wildland and residential fuels, risk assessment strategies, economic cost analysis models, and test methods with representative exposure conditions for fire-resistant building designs and materials.


2016 ◽  
Author(s):  
Melanee Maree Hand ◽  
Rod Moraga ◽  
Manuel J. L'Esperance

2020 ◽  
Vol 29 (3) ◽  
pp. 282
Author(s):  
Vincent Herr ◽  
Adam K. Kochanski ◽  
Van V. Miller ◽  
Rich McCrea ◽  
Dan O'Brien ◽  
...  

A method for estimating the socioeconomic impact of Earth observations is proposed and deployed. The core of the method is the analysis of outcomes of hypothetical fire suppression scenarios generated using a coupled atmosphere–fire behaviour model, based on decisions made by an experienced wildfire incident management team with and without the benefits of MODIS (Moderate Resolution Imaging Spectroradiometer) satellite observations and the WRF-SFIRE wildfire behaviour simulation system. The scenarios were based on New Mexico’s 2011 Las Conchas fire. For each scenario, fire break line location decisions served as inputs to the model, generating fire progression outcomes. Fire model output was integrated with a property database containing thousands of coordinates and property values and other asset values to estimate the total losses associated with each scenario. An attempt to estimate the socioeconomic impact of satellite and modelling data used during the decision-making process was made. We analysed the impact of Earth observations and include considerations for estimating other socioeconomic impacts.


Sign in / Sign up

Export Citation Format

Share Document