Calculation of fire spread rates across random landscapes

2003 ◽  
Vol 12 (2) ◽  
pp. 167 ◽  
Author(s):  
Mark A. Finney

An approach is presented for approximating the expected spread rate of fires that burn across 2-dimensional landscapes with random fuel patterns. The method calculates a harmonic mean spread rate across a small 2-dimensional grid that allows the fire to move forward and laterally. Within this sample grid, all possible spatial fuel arrangements are enumerated and the spread rate of an elliptical fire moving through the cells is found by searching for the minimum travel time. More columns in the sample grid are required for accurately calculating expected spread rates where very slow-burning fuels are present, because the fire must be allowed to move farther laterally around slow patches. This calculation can be used to estimate fire spread rates across spatial fuel mixtures provided that the fire shape was determined from wind and slope. Results suggest that fire spread rates on random landscapes should increase with fire size and that random locations of fuel treatments would be inefficient in changing overall fire growth rates.

2007 ◽  
Vol 16 (5) ◽  
pp. 619 ◽  
Author(s):  
Beatriz Duguy ◽  
José Antonio Alloza ◽  
Achim Röder ◽  
Ramón Vallejo ◽  
Francisco Pastor

The number of large fires increased in the 1970s in the Valencia region (eastern Spain), as in most northern Mediterranean countries, owing to the fuel accumulation that affected large areas as a consequence of an intensive land abandonment. The Ayora site (Valencia province) was affected by a large fire in July 1979. We parameterised the fire growth model FARSITE for the 1979 fire conditions using remote sensing-derived fuel cartography. We simulated different fuel scenarios to study the interactions between fuel spatial distribution and fire characteristics (area burned, rate of spread and fireline intensity). We then tested the effectiveness of several firebreak networks on fire spread control. Simulations showed that fire propagation and behaviour were greatly influenced by fuel spatial distribution. The fragmentation of large dense shrubland areas through the introduction of wooded patches strongly reduced fire size, generally slowing fire and limiting fireline intensity. Both the introduction of forest corridors connecting woodlands and the promotion of complex shapes for wooded patches decreased the area burned. Firebreak networks were always very effective in reducing fire size and their effect was enhanced in appropriate fuel-altered scenarios. Most firebreak alternatives, however, did not reduce either rate of fire spread or fireline intensity.


Author(s):  
David G. Lilley

The recent fire at a Rhode Island nightclub unfortunately made it very clear that catastrophic fires still occur, and that many people still don’t realize just how quickly a seemingly simple fire can grow rapidly into an inescapable furious inferno. Discussion centers on the rapidity of fire growth in many situations, how experiments and modeling have helped to characterize the events, and how the population at large still does not appreciate the immense fire dangers. The technical and scientific information about ignition, fire spread and analysis helps us to understand the amalgamation of key features of the incident. Calculations are shown of how the fire size, total evolution of smoke, smoke generation rate, and smoke level all vary with time, for situations of various rates of fire growth.


2002 ◽  
Vol 32 (8) ◽  
pp. 1420-1424 ◽  
Author(s):  
Mark A Finney

Fire-growth modeling on complex landscapes can be approached as a search for the minimum time for fire to travel among nodes in a two-dimensional network. The paths producing minimum travel time between nodes are then interpolated to reveal the fire perimeter positions at an instant in time. These fire perimeters and their fire behavior characteristics (e.g., spread rate, fireline intensity) are essentially identical to the products of perimeter expansion techniques. Travel time methods offer potential advantages for some kinds of modeling applications, because they are more readily parallelized for computation than methods for expanding fire fronts and require no correction for crossed fronts or merging separate fires.


2007 ◽  
Vol 16 (6) ◽  
pp. 702 ◽  
Author(s):  
Mark A. Finney

Modelling and experiments have suggested that spatial fuel treatment patterns can influence the movement of large fires. On simple theoretical landscapes consisting of two fuel types (treated and untreated), optimal patterns can be analytically derived that disrupt fire growth efficiently (i.e. with less area treated than random patterns). Although conceptually simple, the application of these theories to actual landscapes is made difficult by heterogeneity (fuels, weather, and topography). Here a computational method is described for heterogeneous landscapes that identifies efficient fuel treatment units and patterns for a selected fire weather scenario. The method requires input of two sets of spatial input data: (1) the current fuel conditions; and (2) the potential fuel conditions after a treatment is conducted (if treatment is permitted in a particular location). The contrast in fire spread rate between the two landscapes under the weather scenario conditions indicates where treatments are effective at delaying the growth of fires. Fire growth from the upwind edge of the landscape is then computed using a minimum travel time algorithm. This identifies major fire travel routes (areas needing treatment) and their intersections with the areas where treatments occurred and reduced the spread rate (opportunity for treatment). These zones of treatment ‘need and opportunity’ are iteratively delineated by contiguous patches of raster cells up to a user-supplied constraint on percentage of land area to be treated. This algorithm is demonstrated for simple and for complex landscapes.


1995 ◽  
Vol 5 (4) ◽  
pp. 237 ◽  
Author(s):  
NP Cheney ◽  
JS Gould

The development of grass fires originating from both point and line ignitions and burning in both open grasslands and woodlands with a grassy understorey was studied using 487 periods of fire spread and associated fuel, weather and fire-shape observations. The largest fires travelled more than 1000 m from the origin and the fastest 2-minute spread rate was over 2 m s-1. Given continuous fuel of uniform moisture content, the rate of forward spread was related to both the wind speed and the width of the head fire measured normal to the direction of fire travel. The head fire width required to achieve the potential quasi-steady rate of forward spread for the prevailing conditions increased with increasing wind speeds. These findings have important implications for relating small-scale field or laboratory measurements of fire spread to predictions of wildfire spread. The time taken to reach the potential quasi-steady rate of spread at any wind speed was highly variable. This time was strongly influenced by the frequency of changes in wind direction and the rate of development of a wide head fire.


2021 ◽  
Author(s):  
Biao Zhou ◽  
Hideki Yoshioka ◽  
Takafumi Noguchi ◽  
Kai Wang ◽  
Xinyan Huang
Keyword(s):  

2015 ◽  
Vol 24 (8) ◽  
pp. 1118 ◽  
Author(s):  
Susan Kidnie ◽  
B. Mike Wotton

Prescribed burning can be an integral part of tallgrass prairie restoration and management. Understanding fire behaviour in this fuel is critical to conducting safe and effective prescribed burns. Our goal was to quantify important physical characteristics of southern Ontario’s tallgrass fuel complex prior to and during prescribed burns and synthesise our findings into useful applications for the prescribed fire community. We found that the average fuel load in tallgrass communities was 0.70 kg m–2. Fuel loads varied from 0.38 to 0.96 kg m–2. Average heat of combustion did not vary by species and was 17 334 kJ kg–1. A moisture content model was developed for fully cured, matted field grass, which was found to successfully predict moisture content of the surface layers of cured tallgrass in spring. We observed 25 head fires in spring-season prescribed burns with spread rates ranging from 4 to 55 m min–1. Flame front residence time averaged 27 s, varying significantly with fuel load but not fire spread rate. A grassland spread rate model from Australia showed the closest agreement with observed spread rates. These results provide prescribed-burn practitioners in Ontario better information to plan and deliver successful burns.


2021 ◽  
Author(s):  
Joana Nogueira ◽  
Julia Rodrigues ◽  
Jan Lehmann ◽  
Hanna Meyer ◽  
Renata Libonati

<p>Fire events on a landscape scale are a widespread global phenomenon that influences the interactions between atmosphere and biosphere. Global burned area (BA) products derived from satellite images are used in dynamic vegetation fire modules to estimate greenhouse gas emissions, available fuel biomass and anthropic factors driving fire spread. Fire size and shape complexity from individual fire events can provide better estimates of fuel consumption, fire intensity, post fire vegetation recovery and their effects on landscape changes to better understand regional fire dynamics. Especially in the Brazilian savannas (Cerrado), a mosaic of heterogeneous vegetation where has prevailed an official “zero-fire” policy for decades leading to an increase in large wildfires, intensified also by rapid changes of land use using fire to land clearing in agriculture and livestock purposes. In this way, we aim to assess the fire size and shape patterns in Cerrado from 2013 to 2015, identifying each fire patch event from Landsat BA product and calculating its fire features with landscape metrics. We calculated its surface area to evaluate fire size and the metrics of shape index, core area and eccentricity from an ellipse fitting from burned pixels to estimate the fire shape complexity. The study focused on 48 Landsat path/row scenes and the analysis final compared the fire features of overlapped patches between the years. The total number of coincident fire patches is higher between the years 2013 and 2015 than 2013-2014 and 2014-2015. Large fires are found in the north and east regions for all comparisons. In this region, high core area values are consistent for having large areas of burnt patches and low shape index values and more elongated patches revealed a low fire shape complexity. These results demonstrate a greater burned area in the north, where the remaining native vegetation and less fragmented landscapes allow the fire to spread, when associated with favorable meteorological conditions. However, with the implementation of a new agricultural frontier in 2015, this region is under greater anthropic pressure with positive trends to land use. In the south, the fire shapes are already more complex and smaller because they are from agricultural areas historically developed, and consequently the landscape is more fragmented. Our results demonstrate a distinct spatial pattern of fire shape and size in Cerrado related to fragmentation of landscape and fire use to land cleaning. This information can help the modelling estimates of fire spread processes driven by topography, orientation of watersheds or dominant winds at local level, contributing to understanding the feedback with land cover/use, climate and biophysical characteristics at regional level to develop strategies for fire management.</p><p><strong>Acknowledges:</strong> J.N is funded by the 'Women in Research'-fellowship program (WWU Münster) and within the context of BIOBRAS Project “Research-based learning in neglected biodiverse ecosystems of Brazil”; funding by DAAD (number 57393735); validation dataset was performed under the Andurá project (number 441971/2018–0) funding by CNPq</p>


2018 ◽  
Vol 48 (1) ◽  
pp. 105-110
Author(s):  
Jiann C. Yang

A dimensional analysis was performed to correlate the fuel bed fire rate of spread data previously reported in the literature. Under wind condition, six pertinent dimensionless groups were identified, namely dimensionless fire spread rate, dimensionless fuel particle size, fuel moisture content, dimensionless fuel bed depth or dimensionless fuel loading density, dimensionless wind speed, and angle of inclination of fuel bed. Under no-wind condition, five similar dimensionless groups resulted. Given the uncertainties associated with some of the parameters used to estimate the dimensionless groups, the dimensionless correlations using the resulting dimensionless groups correlate the fire rates of spread reasonably well under wind and no-wind conditions.


2019 ◽  
Vol 28 (3) ◽  
pp. 205 ◽  
Author(s):  
Longyan Cai ◽  
Hong S. He ◽  
Yu Liang ◽  
Zhiwei Wu ◽  
Chao Huang

Fire propagation is inevitably affected by fuel-model parameters during wildfire simulations and the uncertainty of the fuel-model parameters makes forecasting accurate fire behaviour very difficult. In this study, three different methods (Morris screening, first-order analysis and the Monte Carlo method) were used to analyse the uncertainty of fuel-model parameters with FARSITE model. The results of the uncertainty analysis showed that only a few fuel-model parameters markedly influenced the uncertainty of the model outputs, and many of the fuel-model parameters had little or no effect. The fire-spread rate is the driving force behind the uncertainty of other fire behaviours. Thus, the highly uncertain fuel-model parameters associated with spread rate should be used cautiously in wildfire simulations. Monte Carlo results indicated that the relationship between model input and output was non-linear and neglecting fuel-model parameter uncertainty of the model would magnify fire behaviours. Additionally, fuel-model parameters have high input uncertainty. Therefore, fuel-model parameters must be calibrated against actual fires. The highly uncertain fuel-model parameters with high spatial-temporal variability consisted of fuel-bed depth, live-shrub loading and 1-h time-lag loading are preferentially chosen as parameters to calibrate several wildfires.


Sign in / Sign up

Export Citation Format

Share Document