Characterising fire regimes in Spain from fire statistics

2013 ◽  
Vol 22 (3) ◽  
pp. 296 ◽  
Author(s):  
M. Vanesa Moreno ◽  
Emilio Chuvieco

The concept of fire regime refers to a variety of fire characteristics occurring at a given place and period of time. Understanding fire regimes is relevant to fire ecology and fire management because it provides a better understanding of effects of fire as well as the potential effects of different future scenarios. Recent changes in the traditional fire regimes linked to climate and socioeconomic transformations in European Mediterranean areas have influenced fire regimes and their effects on both ecosystems and people. This paper presents a methodology for characterising fire regimes based on historical fire statistics. The analysis includes three dimensions: density, seasonality and interannual variability. The raw records were pre-processed to eliminate errors, and a principal component analysis was performed to identify the primary factors involved in the variation. A cluster analysis was then used to define the fire regimes. Approximately 38% of the spatial cells examined were found to have significant fire activity, but in spite that fires are important in these areas, fire activity showed a high interannual variability. Four fire regimes in the Spanish peninsular territory were described in terms of the density and seasonality of fire activity.

2012 ◽  
Vol 21 (4) ◽  
pp. 328 ◽  
Author(s):  
Steen Magnussen ◽  
Stephen W. Taylor

Year-to-year variation in fire activity in Canada constitutes a key challenge for fire management agencies. Interagency sharing of fire management resources has been ongoing on regional, national and international scales in Canada for several decades to better cope with peaks in resource demand. Inherent stressors on these schemes determined by the fire regimes in constituent jurisdictions are not well known, nor described by averages. We developed a statistical framework to examine the likelihood of regional synchrony of peaks in fire activity at a timescale of 1 week. Year-to-year variations in important fire regime variables and 48 regions in Canada are quantified by a joint distribution and profiled at the Provincial or Territorial level. The fire regime variables capture the timing of the fire season, the average number of fires, area burned, and the timing and extent of annual maxima. The onset of the fire season was strongly correlated with latitude and longitude. Regional synchrony in the timing of the maximum burned area within fire seasons delineates opportunities for and limitations to sharing of fire suppression resources during periods of stress that were quantified in Monte Carlo simulations from the joint distribution.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Willem A. Nieman ◽  
Brian W. van Wilgen ◽  
Alison J. Leslie

Abstract Background Fire is an important process that shapes the structure and functioning of African savanna ecosystems, and managers of savanna protected areas use fire to achieve ecosystem goals. Developing appropriate fire management policies should be based on an understanding of the determinants, features, and effects of prevailing fire regimes, but this information is rarely available. In this study, we report on the use of remote sensing to develop a spatially explicit dataset on past fire regimes in Majete Wildlife Reserve, Malawi, between 2001 and 2019. Moderate Resolution Imaging Spectroradiometer (MODIS) images were used to evaluate the recent fire regime for two distinct vegetation types in Majete Wildlife Reserve, namely savanna and miombo. Additionally, a comparison was made between MODIS and Visible Infrared Imager Radiometer Suite (VIIRS) images by separately evaluating selected aspects of the fire regime between 2012 and 2019. Results Mean fire return intervals were four and six years for miombo and savanna vegetation, respectively, but the distribution of fire return intervals was skewed, with a large proportion of the area burning annually or biennially, and a smaller proportion experiencing much longer fire return intervals. Variation in inter-annual rainfall also resulted in longer fire return intervals during cycles of below-average rainfall. Fires were concentrated in the hot-dry season despite a management intent to restrict burning to the cool-dry season. Mean fire intensities were generally low, but many individual fires had intensities of 14 to 18 times higher than the mean, especially in the hot-dry season. The VIIRS sensors detected many fires that were overlooked by the MODIS sensors, as images were collected at a finer scale. Conclusions Remote sensing has provided a useful basis for reconstructing the recent fire regime of Majete Wildlife Reserve, and has highlighted a current mismatch between intended fire management goals and actual trends. Managers should re-evaluate fire policies based on our findings, setting clearly defined targets for the different vegetation types and introducing flexibility to accommodate natural variation in rainfall cycles. Local evidence of the links between fires and ecological outcomes will require further research to improve fire planning.


1999 ◽  
Vol 21 (1) ◽  
pp. 39 ◽  
Author(s):  
AB Craig

This paper examines a range of environmental, research and practical issues affecting fire management of pastoral lands in the southern part of the Kimberley region in Western Australia. Although spinifex grasslands dominate most leases, smaller areas of more productive pastures are crucially important to many enterprises. There is a lack of local documentation of burning practices during traditional Aboriginal occupation; general features of the fire regime at that time can be suggested on the basis of information from other inland areas. Definition of current tire regimes is improving through interpretation of NOAA-AVHRR satellite imagery. Irregular extensive wildfires appear to dominate, although this should be confirmed by further accumulation, validation and analysis of fire history data. While these fires cause ma,jor difficulties. controlled burn~ng is a necessary part of station management. Although general management guidelines have been published. local research into tire-grazing effects has been very limited. For spinifex pastures, reconimendations are generally consistent with those applying elsewhere in northern Australia. They favour periodic burning of mature spinifex late in the year, before or shortly after the arrival of the first rains, with deferment of grazing. At that time. days of high fire danger may still be expected and prediction of fire behaviour is critical to burning decisions. Early dry-season burning is also required for creating protective tire breaks and to prepare for burning later in the year. Further development of tools for predicting fire behaviour, suited to the discontinuous fuels characteristic of the area, would be warranted. A range of questions concerning the timing and spatial pattern of burning, control of post-fire grazing, and the economics of fire management, should be addressed as resources permit. This can be done through a combination of opportunistic studies, modelling and documentation of local experience. The development of an expert system should be considered to assist in planning and conducting burning activities. Key words: Kimberley, fire regimes, fire management, pastoralism, spinifex


2020 ◽  
Vol 9 (5) ◽  
pp. 333
Author(s):  
Nicole C. Inglis ◽  
Jelena Vukomanovic

Fire management in protected areas faces mounting obstacles as climate change alters disturbance regimes, resources are diverted to fighting wildfires, and more people live along the boundaries of parks. Evidence-based prescribed fire management and improved communication with stakeholders is vital to reducing fire risk while maintaining public trust. Numerous national fire databases document when and where natural, prescribed, and human-caused fires have occurred on public lands in the United States. However, these databases are incongruous and non-standardized, making it difficult to visualize spatiotemporal patterns of fire and engage stakeholders in decision-making. We created interactive decision analytics (“VISTAFiRe”) that transform fire history data into clear visualizations of the spatial and temporal dimensions of fire and its management. We demonstrate the utility of our approach using Big Cypress National Preserve and Everglades National Park as examples of protected areas experiencing fire regime change between 1980 and 2017. Our open source visualizations may be applied to any data from the National Park Service Wildland Fire Events Geodatabase, with flexibility to communicate shifts in fire regimes over time, such as the type of ignition, duration and magnitude, and changes in seasonal occurrence. Application of the tool to Everglades and Big Cypress revealed that natural wildfires are occurring earlier in the wildfire season, while human-caused and prescribed wildfires are becoming less and more common, respectively. These new avenues of stakeholder communication are allowing the National Park Service to devise research plans to prepare for environmental change, guide resource allocation, and support decision-making in a clear and timely manner.


2020 ◽  
Vol 29 (7) ◽  
pp. 595 ◽  
Author(s):  
Alexandra D. Syphard ◽  
Jon E. Keeley

The fire regime is a central framing concept in wildfire science and ecology and describes how a range of wildfire characteristics vary geographically over time. Understanding and mapping fire regimes is important for guiding appropriate management and risk reduction strategies and for informing research on drivers of global change and altered fire patterns. Most efforts to spatially delineate fire regimes have been conducted by identifying natural groupings of fire parameters based on available historical fire data. This can result in classes with similar fire characteristics but wide differences in ecosystem types. We took a different approach and defined fire regime ecoregions for California to better align with ecosystem types, without using fire as part of the definition. We used an unsupervised classification algorithm to segregate the state into spatial clusters based on distinctive biophysical and anthropogenic attributes that drive fire regimes – and then used historical fire data to evaluate the ecoregions. The fire regime ecoregion map corresponded well with the major land cover types of the state and provided clear separation of historical patterns in fire frequency and size, with lower variability in fire severity. This methodology could be used for mapping fire regimes in other regions with limited historical fire data or forecasting future fire regimes based on expected changes in biophysical characteristics.


Koedoe ◽  
2013 ◽  
Vol 55 (1) ◽  
Author(s):  
Tineke Kraaij ◽  
Richard M. Cowling ◽  
Brian W. Van Wilgen

Until recently, fire ecology was poorly understood in the eastern coastal region of the Cape Floral Kingdom (CFK), South Africa. Rainfall in the area is aseasonal and temperatures are milder than in the winter-rainfall and drier inland parts of the CFK, with implications for the management of fire regimes. We synthesised the findings of a research programme focused on informing ecologically sound management of fire in eastern coastal fynbos shrublands and explored potential east–west trends at the scales of study area and CFK in terms of fire return interval (FRI) and fire season. FRIs (8–26 years; 1980–2010) were comparable to those elsewhere in the CFK and appeared to be shorter in the eastern Tsitsikamma than in the western Outeniqua halves of the study area. Proteaceae juvenile periods (4–9 years) and post-fire recruitment success suggested that for biodiversity conservation purposes, FRIs should be ≥ 9 years in eastern coastal fynbos. Collectively, findings on the seasonality of actual fires and the seasonality of fire danger weather, lightning and post-fire proteoid recruitment suggested that fires in eastern coastal fynbos are not limited to any particular season. We articulated these findings into ecological thresholds pertaining to the different elements of the fire regime in eastern coastal fynbos, to guide adaptive management of fire in the Garden Route National Park and elsewhere in the region.Conservation implications: Wildfires are likely to remain dominant in eastern coastal fynbos, whilst large-scale implementation of prescribed burning is unattainable. Fires occurring in any season are not a reason for concern, although other constraints remain: the need for sufficient fire intensity, safety requirements, and integration of fire and invasive alien plant management.


AMBIO ◽  
2008 ◽  
Vol 37 (7) ◽  
pp. 548-556 ◽  
Author(s):  
Dante Arturo Rodríguez Trejo

2014 ◽  
Vol 44 (4) ◽  
pp. 365-376 ◽  
Author(s):  
Yan Boulanger ◽  
Sylvie Gauthier ◽  
Philip J. Burton

Broad-scale fire regime modelling is frequently based on large ecological and (or) administrative units. However, these units may not capture spatial heterogeneity in fire regimes and may thus lead to spatially inaccurate estimates of future fire activity. In this study, we defined homogeneous fire regime (HFR) zones for Canada based on annual area burned (AAB) and fire occurrence (FireOcc), and we used them to model future (2011–2040, 2041–2070, and 2071–2100) fire activity using multivariate adaptive regression splines (MARS). We identified a total of 16 HFR zones explaining 47.7% of the heterogeneity in AAB and FireOcc for the 1959–1999 period. MARS models based on HFR zones projected a 3.7-fold increase in AAB and a 3.0-fold increase in FireOcc by 2100 when compared with 1961–1990, with great interzone heterogeneity. The greatest increases would occur in zones located in central and northwestern Canada. Much of the increase in AAB would result from a sharp increase in fire activity during July and August. Ecozone- and HFR-based models projected relatively similar nationwide FireOcc and AAB. However, very high spatial discrepancies were noted between zonations over extensive areas. The proposed HFR zonation should help providing more spatially accurate estimates of future ecological patterns largely driven by fire in the boreal forest such as biodiversity patterns, energy flows, and carbon storage than those obtained from large-scale multipurpose classification units.


2015 ◽  
Vol 24 (6) ◽  
pp. 857 ◽  
Author(s):  
Andrew Edwards ◽  
Jeremy Russell-Smith ◽  
Mick Meyer

Despite the intact appearance of relatively unmodified north Australian savannas, mounting evidence indicates that contemporary fire regimes characterised by frequent, extensive and severe late dry season wildfires are having deleterious effects on a range of regional water, soil erosion, biodiversity conservation and greenhouse gas (GHG) emissions values. For the high rainfall (>1000 mm year–1) savannas (426 000 km2), we assessed the spatial effects of contemporary fire regimes within the context of ecosystem response models and three plausible alternative fire management scenarios on ecosystem attributes. Over the 2008–12 assessment period, mean annual fire frequency (0.53) comprised mostly late dry season fires. Although spatially variable, contemporary fire regimes resulted in substantial GHG emissions, hill slope erosion and suspended sediment transport, a slight decline in carbon biomass and slight positive effects on fire-vulnerable vegetation. Based on available climate change models and strategic fire management practice, we show that, relative to business-as-usual, improved fire management involving strategic prescribed burning results in substantial benefits to most ecosystem attributes, including under enhanced climate change conditions, whereas in the absence of improved fire management, climate change results in substantially worse outcomes.


2018 ◽  
Vol 18 (3) ◽  
pp. 935-948 ◽  
Author(s):  
Giorgio Vacchiano ◽  
Cristiano Foderi ◽  
Roberta Berretti ◽  
Enrico Marchi ◽  
Renzo Motta

Abstract. Modeling and assessing the factors that drive forest fire ignitions is critical for fire prevention and sustainable ecosystem management. In southern Europe, the anthropogenic component of wildland fire ignitions is especially relevant. In the Alps, however, the role of fire as a component of disturbance regimes in forest and grassland ecosystems is poorly known. The aim of this work is to model the probability of fire ignition for an Alpine region in Italy using a regional wildfire archive (1995–2009) and MaxEnt modeling. We analyzed separately (i) winter forest fires, (ii) winter fires on grasslands and fallow land, and (iii) summer fires. Predictors were related to morphology, climate, and land use; distance from infrastructures, number of farms, and number of grazing animals were used as proxies for the anthropogenic component. Collinearity among predictors was reduced by a principal component analysis. Regarding ignitions, 30 % occurred in agricultural areas and 24 % in forests. Ignitions peaked in the late winter–early spring. Negligence from agrosilvicultural activities was the main cause of ignition (64 %); lightning accounted for 9 % of causes across the study time frame, but increased from 6 to 10 % between the first and second period of analysis. Models for all groups of fire had a high goodness of fit (AUC 0.90–0.95). Temperature was proportional to the probability of ignition, and precipitation was inversely proportional. Proximity from infrastructures had an effect only on winter fires, while the density of grazing animals had a remarkably different effect on summer (positive correlation) and winter (negative) fires. Implications are discussed regarding climate change, fire regime changes, and silvicultural prevention. Such a spatially explicit approach allows us to carry out spatially targeted fire management strategies and may assist in developing better fire management plans.


Sign in / Sign up

Export Citation Format

Share Document