Relation of oxygen consumption to temperature and time of day in tropical anuran amphibians

1977 ◽  
Vol 25 (1) ◽  
pp. 19 ◽  
Author(s):  
WW Weathers ◽  
GK Snyder

Oxygen consumption was examined in three species of tropical frogs, Rana blythi, R. chalcanota and R. nicobariensis, at ambient temperatures between 20 and 35�C. Oxygen consumption varied directly with temperature over the entire range studied. The thermal coefficient (Ql0) for oxygen consumption for the three species averaged 2.67 (range 2.49-2.84), which is similar to that of temperate zone amphibians. At 25�C, the resting oxygen consumption of the tropical frogs averaged only 30% of that predicted for ranids on the basis of body weight. Oxygen consumption of R. nicobariensis and R. chalcanota, determined at 30�C in continuous darkness at 15-min intervals for 26 consecutive hours, exhibited an endogenous rhythm with a period of approximately 12 hours. Thus, while these tropical anurans resemble their temperate relatives in some respects, they possess greatly reduced levels of resting oxygen consumption.

The Condor ◽  
2005 ◽  
Vol 107 (4) ◽  
pp. 810-822
Author(s):  
Walter D. Koenig ◽  
Eric L. Walters ◽  
Jeffrey R. Walters ◽  
James S. Kellam ◽  
Klaus G. Michalek ◽  
...  

Abstract We investigated patterns of seasonal variation in body weight in six populations of five resident species of temperate-zone woodpeckers: Acorn Woodpecker (Melanerpes formicivorus), Red-bellied Woodpecker (M. carolinus), Red-cockaded Woodpecker (Picoides borealis), Downy Woodpecker (P. pubescens), and Great Spotted Woodpecker (Dendrocopos major). After controlling for time of day and overall body size, annual variation in body weight was small and generally not statistically significant. However, analysis revealed evidence of significant “winter fattening,” comparable in magnitude to other temperate-zone resident species, in three of the species. The degree of winter fattening did not correlate with either the size of the acorn crop (for the Acorn Woodpecker) or latitude, two variables potentially related to predictability of food resources. However, the smaller species exhibited significantly greater winter fattening than the larger species, as predicted by the hypothesis that energy storage should be more important for small-bodied species. Furthermore, the food-storing Acorn Woodpecker exhibited considerably less winter fattening than the nonfood-storing species, supporting the hypothesis that food storage provides an ecological alternative to winter fattening.


1971 ◽  
Vol 13 (2) ◽  
pp. 303-313 ◽  
Author(s):  
D. B. Stephens

SUMMARY1. The metabolic rates of 58 individual piglets kept either on a straw or on a concrete floor at ambient temperatures near to 10°, 20° or 30°C have been measured with ages ranging from newborn to 9 days, and body weight from 1·0 to 3·2 kg. The oxygen consumption was measured on each floor material at the chosen ambient temperature thus allowing paired comparisons for each animal.2. In comparison with the concrete floor, oxygen consumption on straw was reduced by 18% at 10°C, 27% at 20°C and by 12% at 30°C for pigs 2 to 9 days old. The regression coefficients of mean log (oxygen consumption) on log (body weight) were around 0·66 at 10° and 20°C. At 30°C the value was 0·99 ± 0·14. The regression coefficients were not significantly affected by the presence of a straw floor showing that its effect did not vary with body weight. Corresponding values foi piglets below 24 hours of age were 17% at 10°C, 27% at 20°C and 22% at 30°C ambient temperature.3. Moving a piglet on to a straw floor at 10°C had the same thermal effect as raising the ambient temperature to 18°C. Similar treatment at 30°C was equivalent to raising the ambient temperature to 32°C.4. Lowering ambient temperature to increase the temperature gradient between the homeothermic body of the piglet and the environment progressively increased heat loss in all cases. There was a concomitant decrease in the calculated conductance between core and environment which was more pronounced for the piglets lying on the concrete floor.


1978 ◽  
Vol 53 (11) ◽  
pp. 850-854 ◽  
Author(s):  
N Rutter ◽  
S M Brown ◽  
D Hull

Over 200 measurements of the resting rate of oxygen consumption using an open-circuit method were made on 15 small babies nursed in their usual clinical setting during the first month of life. There were striking and persistent variations between babies that could not be explained by postnatal age, relationship to feed, sleep, or time of day. It was not possible from clinical examination to predict which babies had the higher or lower metabolic rates, except that babies who were light-for-dates generally had higher values. Because of these variations the appropriate thermal temperature for small babies cannot be predicted from average values adjusted for body weight and postnatal age alone.


1992 ◽  
Vol 70 (3) ◽  
pp. 408-411 ◽  
Author(s):  
Peter B. Frappell ◽  
Andrea Dotta ◽  
Jacopo P. Mortola

Aerobic metabolism (oxygen consumption, [Formula: see text], and carbon dioxide production, [Formula: see text]) has been measured in newborn rats at 2 days of age during normoxia, 30 min of hyperoxia (100% O2) and an additional 30 min of recovery in normoxia at ambient temperatures of 35 °C (thermoneutrality) or 30 °C. In normoxia, at 30 °C [Formula: see text] was higher than at 35 °C. With hyperoxia, [Formula: see text] increased in all cases, but more so at 30 °C (+20%) than at 35 °C (+9%). Upon return to normoxia, metabolism readily returned to the prehyperoxic value. The results support the concept that the normoxic metabolic rate of the newborn can be limited by the availability of oxygen. At temperatures below thermoneutrality the higher metabolic needs aggravate the limitation in oxygen availability, and the positive effects of hyperoxia on [Formula: see text] are therefore more apparent.Key words: neonatal respiration, oxygen consumption, thermoregulation.


1957 ◽  
Vol 188 (3) ◽  
pp. 435-438 ◽  
Author(s):  
M. J. Fregly ◽  
N. B. Marshall ◽  
J. Mayer

Goldthioglucose-obese mice cannot adjust their food intake to meet the increased energy requirements due to cold. At all ambient temperatures above 15°C the spontaneous running activity of these animals is less than that observed for nonobese controls. Activity of obese mice is maximal at 19°C and minimal at 15°C or lower. Body weights decrease during exposure to cold. In contrast to that of obese mice, running activity of nonobese controls is maximal at an ambient temperature of 25°C but nearly ceases at 15°C or lower. The food intake of these animals increases in the cold and remains elevated even at temperatures at which activity decreases. The body weight of nonobese controls is either maintained constant or increases during exposure to cold air.


Author(s):  
Kenneth W. Kambis ◽  
Sarah K. Pizzedaz

Creatine monohydrate (CrH2O) supplementation has been demonstrated to increase skeletal muscle power output in men. However, its effect upon women is not as clearly defined. This study investigated the effect of oral creatine supplementation upon muscle function, thigh circumference, and body weight in women. Twenty-two consenting college-age women were assigned to 1 of 2 groups matched for dietary and exercise habits, phase of menstrual cycle, and fat-free mass (FFM). After familiarization with testing procedures, pretrial measures of muscle function (5 repetitions 60 deg · s−1 and 50 repetitions 180 deg · s−1) were conducted during maximal voluntary concentric contraction of the preferred quadriceps muscle using an isokinetic dynamometer. Subjects then ingested 0.5 g · kg−1 FFM of either CrH2O or placebo (one fourth dosage 4 times daily) in a double-blind design for 5 days. Resistance exercise was prohibited. After the ingestion phase was completed, all measures were repeated at the same time of day as during pretrials. Statistical analysis revealed time to peak torque in quadriceps extension decreased from pre-test values of 255 ± 11 ms (mean ± SEM) to post-test values of 223 ± 3 ms; average power in extension increased from 103 ± 7 W pre-test to 112 ± 7 W post-test; and, during flexion, average power increased from 59 ± 5 W pre-test to 65 ± 5 W post-test in the creatine group as compared to controls (p ≤ .05). FFM, percent body fat, mid-quadriceps circumference, skinfold thickness of the measured thigh, and total body weight did not change for both groups between trials. We conclude that CrH2O improves muscle performance in women without significant gains in muscle volume or body weight.


1999 ◽  
Vol 86 (5) ◽  
pp. 1657-1662 ◽  
Author(s):  
Young-Hui Chang ◽  
Rodger Kram

Previous studies have suggested that generating vertical force on the ground to support body weight (BWt) is the major determinant of the metabolic cost of running. Because horizontal forces exerted on the ground are often an order of magnitude smaller than vertical forces, some have reasoned that they have negligible cost. Using applied horizontal forces (AHF; negative is impeding, positive is aiding) equal to −6, −3, 0, +3, +6, +9, +12, and +15% of BWt, we estimated the cost of generating horizontal forces while subjects were running at 3.3 m/s. We measured rates of oxygen consumption (V˙o 2) for eight subjects. We then used a force-measuring treadmill to measure ground reaction forces from another eight subjects. With an AHF of −6% BWt,V˙o 2 increased 30% compared with normal running, presumably because of the extra work involved. With an AHF of +15% BWt, the subjects exerted ∼70% less propulsive impulse and exhibited a 33% reduction inV˙o 2. Our data suggest that generating horizontal propulsive forces constitutes more than one-third of the total metabolic cost of normal running.


2021 ◽  
Vol 13 (1) ◽  
pp. 111-120
Author(s):  
Mladen Mikić ◽  
Marko D.M. Stojanović ◽  
Aleksandra Milovančev ◽  
Tatjana Miljković ◽  
Marija Bjelobrk ◽  
...  

Abstract Study aim: To asses and compare the aerobic capacity and respiratory parameters in recreational basketball-engaged university students with age-matched untrained young adults. Material and methods: A total of 30 subjects were selected to took part in the study based on recreational-basketball activity level and were assigned to a basketball (BG: n = 15, age 22.86 ± 1.35 yrs., body height 185.07 ± 5.95 cm, body weight 81.21 ± 6.15 kg) and untrained group (UG: n = 15, age 22.60 ± 1.50 yrs., body height 181.53 ± 6.11 cm, body weight 76.89 ± 7.30 kg). Inspiratory vital capacity (IVC), forced expiration volume (FEV1), FEV1/IVC ratio, maximal oxygen consumption (VO2max), ventilatory threshold (VO2VT) and time to exhaustion, were measured in all subjects. Student T-test for independent Sample and Cohen’s d as the measure of the effect size were calculated. Results: Recreational basketball-engaged students (EG) reached significantly greater IVC (t = 7.240, p < 0.001, d = 1.854), FEV1 (t = 10.852, p < 0.001, d = 2.834), FEV1/IVC ratio (t = 6.370, p < 0.001, d = 3.920), maximal oxygen consumption (t = 9.039, p < 0.001, d = 3.310), ventilatory threshold (t = 9.859, p < 0.001, d = 3.607) and time to exhaustion (t = 12.361, p < 0.001, d = 4.515) compared to UG. Conclusions: Long-term exposure to recreational basketball leads to adaptive changes in aerobic and respiratory parameters in male university students.


Sign in / Sign up

Export Citation Format

Share Document