scholarly journals Specific expression of long noncoding RNAs in the mouse brain

2008 ◽  
Vol 105 (2) ◽  
pp. 716-721 ◽  
Author(s):  
T. R. Mercer ◽  
M. E. Dinger ◽  
S. M. Sunkin ◽  
M. F. Mehler ◽  
J. S. Mattick
2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Zhanpeng Huang ◽  
Gengze Wu ◽  
Jian-Hua Yang ◽  
Jian Ding ◽  
Jinghai Chen ◽  
...  

Long noncoding RNAs (LncRNAs) are RNA transcripts longer than 200 nucleotides that lack protein-coding potential. Although thousands of lncRNAs have been identified, only a few have been linked to cardiac gene expression and function. In this study, we identified, from genome-scale RNA-seq data, 12 candidate lncRNAs associated with cardiac hypertrophy (CH-lncRNAs). The expression of these lncRNAs was altered in mouse models of cardiac hypertrophy induced by transverse aortic constriction (TAC)- or CnA transgene. To determine the function of these lncRNAs, we developed an adeno-associated virus serotype 9 (AAV9)-based functional screening in postnatal mice. An AAV9:cTNT vector, in which the cardiac troponin T (cTNT) promoter was used to direct cardiac-specific expression of target genes, was utilized to overexpress or knockdown candidate lncRNAs in mouse hearts. Postnatal day 1 wild type or CnA transgenic pups were injected with AAV9 viruses and cardiac function was measured one and two months later. Thus far, we have tested 15 candidate lncRNAs for both gain- and loss-of-function studies. Among them, two lncRNAs were demonstrated regulating hypertrophy growth when knocked down. Finally, we identified the human homologues of CH-lncRNA through analyzing the conservation of the promoter regions of lncRNA genes. We showed that the expression of these human CH-lncRNA was dysregulated in human diseased hearts, suggesting the functional conservation of these lncRNAs in cardiac disease. Our study therefore demonstrated that lncRNAs are important regulator of cardiac hypertrophy and disease.


2018 ◽  
Author(s):  
Alice Pieri ◽  
Mario Enrico Pè ◽  
Edoardo Bertolini

AbstractTriticum urartu and Aegilops tauschii are the diploid progenitors of the hexaploid Triticum aestivum (AuAuBBDD), donors of the Au and D genome respectively. In this work we investigate the long noncoding RNAs (lncRNAs) component of the genomes of these two wild wheat relatives. Sixty-eight RNA-seq libraries generated from several organs and conditions were retrieved from public databases. We annotated and characterized 14,515 T. urartu and 20,908 Ae. tauschii bona-fide lncRNA transcripts that show features similar to those of other plant and animal counterparts. Thousands of lncRNAs were found significantly modulated in different organs and exhibited organ specific expression, with a predominant accumulation in the spike, fostering the hypothesis of their crucial role in reproductive organs. Most of the organ-specific lncRNAs were found associated with transposable elements (TEs), indicating the possible role of TEs in lncRNA origin, differentiation and function. The majority of T. urartu and Ae. tauschii lncRNAs appear to be species-specific; nevertheless, we found some lncRNAs conserved between the two wheat progenitors, highlighting the presence and conservation of exonic splicing enhancers sites in multi-exon conserved lncRNAs. In addition, we found cases of lncRNA conservation and their cis regulatory regions spanning the wheat pre-domestication and post-domestication period. Altogether, these results represent the first comprehensive genome-wide encyclopedia of lncRNAs in wild wheat relatives, and they provide clues as to the hidden regulatory pathway mediated by long noncoding RNAs in these largely unexplored wheat progenitors.


2020 ◽  
Vol 21 (12) ◽  
pp. 4217
Author(s):  
Lukasz Paukszto ◽  
Anita Mikolajczyk ◽  
Jan P. Jastrzebski ◽  
Marta Majewska ◽  
Kamil Dobrzyn ◽  
...  

Endometrial infections at a young age can lead to fertility issues in adulthood. Bacterial endotoxins, such as lipopolysaccharide (LPS), can participate in long-term molecular changes even at low concentrations. Lipopolysaccharide plays a crucial role in the progression of septic shock, inflammation and auto-immune diseases. The aim of this study was to describe transcriptomic modulations in the porcine endometrium, induced in vivo by a single subclinical dose of LPS from Salmonella Enteritidis. which did not produce clinical symptoms of toxicity. The RNA-seq methodology was applied to reveal 456 differentially expressed regions, including 375 genes, four long noncoding RNAs, and 77 other unclassified transcripts. Two independent methods confirmed 118 alternatively spliced genes that participate i.a., in the formation of the MHC-I complex and the adaptive immune response. Single nucleotide variant-calling algorithms supported the identification of 3730 allele-specific expression variants and 57 canonical A-to-I RNA editing sites. The results demonstrated that the differential expression of genes involved in inflammation, immune response, angiogenesis and endometrial development may be maintained for up to 7 days after exposure to LPS. RNA editing sites and long noncoding RNAs (lncRNAs) play an important role in transcriptional regulatory machinery in the porcine endometrium in response to LPS administration.


2021 ◽  
Author(s):  
Ana Ayupe ◽  
Felipe Beckedorff ◽  
Konstantin Levay ◽  
Ramin Shiekhattar ◽  
Kevin Park

Abstract Background: Emerging evidence indicates that long noncoding RNAs (lncRNAs) are important regulators of various biological processes, and their expression can be altered following certain pathological conditions, including central nervous system injury. Retinal ganglion cells (RGCs), whose axons form the optic nerve, are a heterogeneous population of neurons with more than 20 molecularly distinct subtypes. While most RGCs, including the ON-OFF direction-selective RGCs (ooDSGCs), are vulnerable to axonal injury, a small population of RGCs, including the intrinsically photosensitive RGCs (ipRGCs), are more resilient. Results: By performing systematic analyses on RNA-sequencing data, here we identify lncRNAs that are expressed in ooDSGCs and ipRGCs with and without axonal injury. Our results reveal a repertoire of different classes of lncRNAs, including long intergenic noncoding RNAs and antisense ncRNAs that are differentially expressed between these RGC types. Strikingly, we also found dozens of lncRNAs whose expressions are altered markedly in response to axonal injury, some of which are expressed exclusively in either one of the subtypes. Moreover, analyses into these lncRNAs unraveled their neighboring coding genes, many of which encode transcription factors and signaling molecules, suggesting that these lncRNAs may act in cis to regulate important biological processes in these neurons. Lastly, guilt-by-association analysis showed that lncRNAs are correlated with apoptosis associated genes, suggesting potential roles for these lncRNAs in RGC survival.Conclusions: Overall, the results of this study reveal RGC type-specific expression of lncRNAs and provide a foundation for future investigation of the function of lncRNAs in regulating neuronal type specification and survival.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ana C. Ayupe ◽  
Felipe Beckedorff ◽  
Konstantin Levay ◽  
Benito Yon ◽  
Yadira Salgueiro ◽  
...  

Abstract Background Emerging evidence indicates that long noncoding RNAs (lncRNAs) are important regulators of various biological processes, and their expression can be altered following certain pathological conditions, including central nervous system injury. Retinal ganglion cells (RGCs), whose axons form the optic nerve, are a heterogeneous population of neurons with more than 40 molecularly distinct subtypes in mouse. While most RGCs, including the ON-OFF direction-selective RGCs (ooDSGCs), are vulnerable to axonal injury, a small population of RGCs, including the intrinsically photosensitive RGCs (ipRGCs), are more resilient. Results By performing systematic analyses on RNA-sequencing data, here we identify lncRNAs that are expressed in ooDSGCs and ipRGCs with and without axonal injury. Our results reveal a repertoire of different classes of lncRNAs, including long intergenic noncoding RNAs and antisense ncRNAs that are differentially expressed between these RGC types. Strikingly, we also found dozens of lncRNAs whose expressions are altered markedly in response to axonal injury, some of which are expressed exclusively in either one of the types. Moreover, analyses into these lncRNAs unraveled their neighboring coding genes, many of which encode transcription factors and signaling molecules, suggesting that these lncRNAs may act in cis to regulate important biological processes in these neurons. Lastly, guilt-by-association analysis showed that lncRNAs are correlated with apoptosis associated genes, suggesting potential roles for these lncRNAs in RGC survival. Conclusions Overall, the results of this study reveal RGC type-specific expression of lncRNAs and provide a foundation for future investigation of the function of lncRNAs in regulating neuronal type specification and survival.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2331-2331
Author(s):  
Vikram R Paralkar ◽  
Tejaswini Mishra ◽  
Jing Luan ◽  
Yu Yao ◽  
Neeraja Konuthula ◽  
...  

Abstract Abstract 2331 Lnc (long noncoding) RNAs are RNA transcripts greater than 200nt that regulate gene expression independent of protein coding potential. It is estimated that thousands of lncRNAs play vital roles in diverse cellular processes and are involved in numerous diseases, including cancer. We hypothesize that multiple lncRNAs regulate erythrocyte and megakaryocyte formation by modulating gene expression. To identify lncRNAs in erythro-megakaryopoiesis, we purified two biological replicates each of murine Ter119+ erythroblasts, CD41+ megakaryocytes and bipotential megakaryocyte-erythroid progenitors (MEPs) [Lin− Kit+, Sca1−, CD16/32−, CD34−]. We performed strand-specific, paired-end, 200nt-read-length deep sequencing (RNA-Seq) to a depth of ∼200 million reads per sample using the Illumina GAII platform. We used the Tophat and Cufflinks suite of bioinformatic tools to assemble and compare de-novo transcriptomes from these three cell types, producing a high-confidence set of 69,488 transcripts. We confirmed that the RNA-seq assemblies accurately reflect gene expression predicted from prior studies. For example, Ter119+ cells were highly enriched for key erythroid transcripts encoding globins, heme synthetic enzymes and specialized membrane proteins. Megakaryocytes expressed high levels of gene encoding lineage-specific integrins and platelet markers. MEPs expressed numerous progenitor genes including Gata2, Kit and Myc. Thus, the RNA-seq data are of high-quality and sufficient complexity to accurately represent erythroid, megakaryocytic and MEP transcriptomes. We used a series of Unix-based bioinformatic filtering tools to identify lncRNAs that are expressed in these transcriptomes. We identified 605 “stringent” lncRNAs, and 813 “potential noncoding” transcripts. 47% of the lncRNAs are novel unannotated transcripts, validating the use of de-novo RNA-Seq in unique cell populations for lncRNA discovery. Among the 605 “stringent” lncRNAs, 103 are erythroid-restricted, 133 are meg-restricted and 280 are MEP-restricted, consistent with reports that lncRNAs exhibit exquisitely cell-type specific expression. Current efforts are aimed at generating a more comprehensive map of lncRNA expression at specific stages of erythroid and megakaryocyte/platelet development, and performing high throughput functional screens to analyze currently identified lncRNAs. Our studies are beginning to define new layers of gene regulation in normal erythro-megakaryopoiesis and are relevant to the pathophysiology of related disorders including various anemias, myeloproliferative and myelodysplastic syndromes and leukemias. Disclosures: No relevant conflicts of interest to declare.


RNA Biology ◽  
2019 ◽  
Vol 17 (3) ◽  
pp. 350-365
Author(s):  
María F. Trovero ◽  
Rosana Rodríguez-Casuriaga ◽  
Carlos Romeo ◽  
Federico F. Santiñaque ◽  
Mateo François ◽  
...  

2021 ◽  
Author(s):  
Carlos Pulido-Quetglas ◽  
Rory Johnson

AbstractHuman and other genomes encode tens of thousands of long noncoding RNAs (lncRNAs), the vast majority of which remain uncharacterised. High-throughput functional screening methods, notably those based on pooled CRISPR-Cas perturbations, promise to unlock the biological significance and biomedical potential of lncRNAs. Such screens are based on libraries of single guide RNAs (sgRNAs) whose design is critical for success. Few off-the-shelf libraries are presently available, and lncRNAs tend to have cell-type-specific expression profiles, meaning that library design remains in the hands of researchers. Here we introduce the topic of pooled CRISPR screens for lncRNAs and guide readers through the three key steps of library design: accurate annotation of transcript structures, curation of optimal candidate sets, and design of sgRNAs. This review is a starting point and reference for researchers seeking to design custom CRISPR screening libraries for lncRNAs.


Sign in / Sign up

Export Citation Format

Share Document