scholarly journals Long non-coding RNAs in wild wheat progenitors

2018 ◽  
Author(s):  
Alice Pieri ◽  
Mario Enrico Pè ◽  
Edoardo Bertolini

AbstractTriticum urartu and Aegilops tauschii are the diploid progenitors of the hexaploid Triticum aestivum (AuAuBBDD), donors of the Au and D genome respectively. In this work we investigate the long noncoding RNAs (lncRNAs) component of the genomes of these two wild wheat relatives. Sixty-eight RNA-seq libraries generated from several organs and conditions were retrieved from public databases. We annotated and characterized 14,515 T. urartu and 20,908 Ae. tauschii bona-fide lncRNA transcripts that show features similar to those of other plant and animal counterparts. Thousands of lncRNAs were found significantly modulated in different organs and exhibited organ specific expression, with a predominant accumulation in the spike, fostering the hypothesis of their crucial role in reproductive organs. Most of the organ-specific lncRNAs were found associated with transposable elements (TEs), indicating the possible role of TEs in lncRNA origin, differentiation and function. The majority of T. urartu and Ae. tauschii lncRNAs appear to be species-specific; nevertheless, we found some lncRNAs conserved between the two wheat progenitors, highlighting the presence and conservation of exonic splicing enhancers sites in multi-exon conserved lncRNAs. In addition, we found cases of lncRNA conservation and their cis regulatory regions spanning the wheat pre-domestication and post-domestication period. Altogether, these results represent the first comprehensive genome-wide encyclopedia of lncRNAs in wild wheat relatives, and they provide clues as to the hidden regulatory pathway mediated by long noncoding RNAs in these largely unexplored wheat progenitors.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3951
Author(s):  
Sarva Keihani ◽  
Verena Kluever ◽  
Eugenio F. Fornasiero

The extraordinary cellular diversity and the complex connections established within different cells types render the nervous system of vertebrates one of the most sophisticated tissues found in living organisms. Such complexity is ensured by numerous regulatory mechanisms that provide tight spatiotemporal control, robustness and reliability. While the unusual abundance of long noncoding RNAs (lncRNAs) in nervous tissues was traditionally puzzling, it is becoming clear that these molecules have genuine regulatory functions in the brain and they are essential for neuronal physiology. The canonical view of RNA as predominantly a ‘coding molecule’ has been largely surpassed, together with the conception that lncRNAs only represent ‘waste material’ produced by cells as a side effect of pervasive transcription. Here we review a growing body of evidence showing that lncRNAs play key roles in several regulatory mechanisms of neurons and other brain cells. In particular, neuronal lncRNAs are crucial for orchestrating neurogenesis, for tuning neuronal differentiation and for the exact calibration of neuronal excitability. Moreover, their diversity and the association to neurodegenerative diseases render them particularly interesting as putative biomarkers for brain disease. Overall, we foresee that in the future a more systematic scrutiny of lncRNA functions will be instrumental for an exhaustive understanding of neuronal pathophysiology.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Zhanpeng Huang ◽  
Gengze Wu ◽  
Jian-Hua Yang ◽  
Jian Ding ◽  
Jinghai Chen ◽  
...  

Long noncoding RNAs (LncRNAs) are RNA transcripts longer than 200 nucleotides that lack protein-coding potential. Although thousands of lncRNAs have been identified, only a few have been linked to cardiac gene expression and function. In this study, we identified, from genome-scale RNA-seq data, 12 candidate lncRNAs associated with cardiac hypertrophy (CH-lncRNAs). The expression of these lncRNAs was altered in mouse models of cardiac hypertrophy induced by transverse aortic constriction (TAC)- or CnA transgene. To determine the function of these lncRNAs, we developed an adeno-associated virus serotype 9 (AAV9)-based functional screening in postnatal mice. An AAV9:cTNT vector, in which the cardiac troponin T (cTNT) promoter was used to direct cardiac-specific expression of target genes, was utilized to overexpress or knockdown candidate lncRNAs in mouse hearts. Postnatal day 1 wild type or CnA transgenic pups were injected with AAV9 viruses and cardiac function was measured one and two months later. Thus far, we have tested 15 candidate lncRNAs for both gain- and loss-of-function studies. Among them, two lncRNAs were demonstrated regulating hypertrophy growth when knocked down. Finally, we identified the human homologues of CH-lncRNA through analyzing the conservation of the promoter regions of lncRNA genes. We showed that the expression of these human CH-lncRNA was dysregulated in human diseased hearts, suggesting the functional conservation of these lncRNAs in cardiac disease. Our study therefore demonstrated that lncRNAs are important regulator of cardiac hypertrophy and disease.


2020 ◽  
Vol 6 (2) ◽  
pp. 24 ◽  
Author(s):  
Liming Chen ◽  
Yifan Bao ◽  
Suzhen Jiang ◽  
Xiao-bo Zhong

Long noncoding RNAs (lncRNAs) are RNAs with a length of over 200 nucleotides that do not have protein-coding abilities. Recent studies suggest that lncRNAs are highly involved in physiological functions and diseases. lncRNAs HNF1α-AS1 and HNF4α-AS1 are transcripts of lncRNA genes HNF1α-AS1 and HNF4α-AS1, which are antisense lncRNA genes located in the neighborhood regions of the transcription factor (TF) genes HNF1α and HNF4α, respectively. HNF1α-AS1 and HNF4α-AS1 have been reported to be involved in several important functions in human physiological activities and diseases. In the liver, HNF1α-AS1 and HNF4α-AS1 regulate the expression and function of several drug-metabolizing cytochrome P450 (P450) enzymes, which also further impact P450-mediated drug metabolism and drug toxicity. In addition, HNF1α-AS1 and HNF4α-AS1 also play important roles in the tumorigenesis, progression, invasion, and treatment outcome of several cancers. Through interacting with different molecules, including miRNAs and proteins, HNF1α-AS1 and HNF4α-AS1 can regulate their target genes in several different mechanisms including miRNA sponge, decoy, or scaffold. The purpose of the current review is to summarize the identified functions and mechanisms of HNF1α-AS1 and HNF4α-AS1 and to discuss the future directions of research of these two lncRNAs.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Haihong Shi ◽  
Yuxin Xu ◽  
Xin Yi ◽  
Dandan Fang ◽  
Xia Hou

Hepatocellular carcinoma (HCC) is the second leading cause of mortality among cancers. It has been found that long noncoding RNAs (lncRNAs) are involved in many human cancers, including liver cancer. It has been identified that carcinogenic and tumor-suppressing lncRNAs are associated with complex processes in liver cancer. These lncRNAs may participate in a variety of pathological and biological activities, such as cell proliferation, apoptosis, invasion, and metastasis. Here, we review the regulation and function of lncRNA in liver cancer and evaluate the potential of lncRNA as a new goal for liver cancer.


2020 ◽  
Vol 21 (12) ◽  
pp. 4217
Author(s):  
Lukasz Paukszto ◽  
Anita Mikolajczyk ◽  
Jan P. Jastrzebski ◽  
Marta Majewska ◽  
Kamil Dobrzyn ◽  
...  

Endometrial infections at a young age can lead to fertility issues in adulthood. Bacterial endotoxins, such as lipopolysaccharide (LPS), can participate in long-term molecular changes even at low concentrations. Lipopolysaccharide plays a crucial role in the progression of septic shock, inflammation and auto-immune diseases. The aim of this study was to describe transcriptomic modulations in the porcine endometrium, induced in vivo by a single subclinical dose of LPS from Salmonella Enteritidis. which did not produce clinical symptoms of toxicity. The RNA-seq methodology was applied to reveal 456 differentially expressed regions, including 375 genes, four long noncoding RNAs, and 77 other unclassified transcripts. Two independent methods confirmed 118 alternatively spliced genes that participate i.a., in the formation of the MHC-I complex and the adaptive immune response. Single nucleotide variant-calling algorithms supported the identification of 3730 allele-specific expression variants and 57 canonical A-to-I RNA editing sites. The results demonstrated that the differential expression of genes involved in inflammation, immune response, angiogenesis and endometrial development may be maintained for up to 7 days after exposure to LPS. RNA editing sites and long noncoding RNAs (lncRNAs) play an important role in transcriptional regulatory machinery in the porcine endometrium in response to LPS administration.


2008 ◽  
Vol 105 (2) ◽  
pp. 716-721 ◽  
Author(s):  
T. R. Mercer ◽  
M. E. Dinger ◽  
S. M. Sunkin ◽  
M. F. Mehler ◽  
J. S. Mattick

2015 ◽  
Vol 15 (1) ◽  
pp. 38-46 ◽  
Author(s):  
Xingli Guo ◽  
Lin Gao ◽  
Yu Wang ◽  
David K. Y. Chiu ◽  
Tong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document