scholarly journals Dark-matter QCD-axion searches

2015 ◽  
Vol 112 (40) ◽  
pp. 12278-12281 ◽  
Author(s):  
Leslie J Rosenberg

In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10−(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Paolo Ciarcelluti

One of the still viable candidates for the dark matter is the so-called mirror matter. Its cosmological and astrophysical implications were widely studied, pointing out the importance to go further with research. In particular, the Big Bang nucleosynthesis provides a strong test for every dark matter candidate, since it is well studied and involves relatively few free parameters. The necessity of accurate studies of primordial nucleosynthesis with mirror matter has then emerged. I present here the results of accurate numerical simulations of the primordial production of both ordinary nuclides and nuclides made of mirror baryons, in presence of a hidden mirror sector with unbroken parity symmetry and with gravitational interactions only. These elements are the building blocks of all the structures forming in the Universe; therefore, their chemical composition is a key ingredient for astrophysics with mirror dark matter. The production of ordinary nuclides shows differences from the standard model for a ratio of the temperatures between mirror and ordinary sectorsx=T′/T≳0.3, and they present an interesting decrease of the abundance ofLi7. For the mirror nuclides, instead, one observes an enhanced production ofHe4, which becomes the dominant element forx≲0.5, and much larger abundances of heavier elements.


2005 ◽  
Vol 14 (01) ◽  
pp. 107-119 ◽  
Author(s):  
ZURAB BEREZHIANI ◽  
PAOLO CIARCELLUTI ◽  
DENIS COMELLI ◽  
FRANCESCO L. VILLANTE

In the mirror world hypothesis, the mirror baryonic component emerges as a possible dark matter candidate. An immediate question arises: how do the mirror baryons behave and what are their differences from the more familiar dark matter candidates such as cold dark matter? In this paper, we answer this question quantitatively. First, we discuss the dependence of the relevant scales for the structure formation (Jeans and Silk scales) on the two macroscopic parameters necessary to define the model: the temperature of the mirror plasma (limited by the Big Bang Nucleosynthesis) and the amount of mirror baryonic matter. Then we perform a complete quantitative calculation of the implications of mirror dark matter on the cosmic microwave background and large scale structure power spectrum. Finally, confronting with the present observational data, we obtain some bounds on the mirror parameter space.


2002 ◽  
Vol 10 (2) ◽  
pp. 221-236 ◽  
Author(s):  
ANDREW R. LIDDLE

The 20th century saw the establishment of the first quantitative theory seeking to describe the behaviour of the Universe as a whole – the Big Bang. This sets up a framework within which there has been great success in interpreting a wide range of observations, including the abundances of light chemical elements, the existence and spectrum of the cosmic microwave radiation, and the formation and evolution of galaxies. At the end of the 20th century, the surprising conclusion of the Big Bang theory is that 95% of the Universe is made of two different unknown types of material whose nature remains unclear: dark matter and dark energy. Needless to say, this is a major challenge for science. At the beginning of the 21st century, cosmology appears poised to enter a high-precision era, where the key quantities of cosmology will be determined to two or more significant figures. If cosmologists are on the right track, this will confirm the existence of dark matter and dark energy; if not, it will force us to revise our current picture of the Universe. Either way, the prospect is for exciting years ahead in cosmology.


Author(s):  
Geoff Cottrell

Matter: A Very Short Introduction explains matter—the stuff of which your body and the universe is made—from elementary particles, to atoms, humans, planets, up to the superclusters of galaxies. Familiar solids, liquids, and gases are described, as well as plasmas, exotic forms of quantum matter, and antimatter. This VSI outlines the quantum properties of atoms, the fundamental forces of nature, and how the different forms of matter arise. The origins of matter are traced to the Big Bang, 13.8 billion years ago. However, all the familiar normal matter constitutes only 5% of the matter that exists. The remainder comes in two mysterious forms: dark matter and dark energy, which are discussed.


2005 ◽  
Vol 20 (14) ◽  
pp. 1021-1036 ◽  
Author(s):  
GIANFRANCO BERTONE ◽  
DAVID MERRITT

Non-baryonic, or "dark", matter is believed to be a major component of the total mass budget of the Universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.


1996 ◽  
Vol 168 ◽  
pp. 17-29
Author(s):  
John C. Mather

The Cosmic Background Explorer (COBE) was developed by NASA Goddard Space Flight Center to measure the diffuse infrared and microwave radiation from the early universe. It also measured emission from nearby sources such as the stars, dust, molecules, atoms, ions, and electrons in the Milky Way, and dust and comets in the Solar System. It was launched 18 November 1989 on a Delta rocket, carrying one microwave instrument and two cryogenically cooled infrared instruments. The Far Infrared Absolute Spectrophotometer (FIRAS) mapped the sky at wavelengths from 0.01 to 1 cm, and compared the CMBR to a precise blackbody. The spectrum of the CMBR differs from a blackbody by less than 0.03%. The Differential Microwave Radiometers (DMR) measured the fluctuations in the CMBR originating in the Big Bang, with a total amplitude of 11 parts per million on a 10° scale. These fluctuations are consistent with scale-invariant primordial fluctuations. The Diffuse Infrared Background Experiment (DIRBE) spanned the wavelength range from 1.2 to 240 μm and mapped the sky at a wide range of solar elongation angles to distinguish foreground sources from a possible extragalactic Cosmic Infrared Background Radiation (CIBR). In this paper we summarize the COBE mission and describe the results from the FIRAS instrument. The results from the DMR and DIRBE were described by Smoot and Hauser at this Symposium.


Author(s):  
Jae-Kwang Hwang

Space-time evolution is briefly explained by using the 3-dimensional quantized space model (TQSM) based on the 4-dimensional (4-D) Euclidean space. The energy (E=cDtDV), charges (|q|= cDt) and absolute time (ct) are newly defined based on the 4-D Euclidean space. The big bang is understood by the space-time evolution of the 4-D Euclidean space but not by the sudden 4-D Minkowski space-time creation. The big bang process created the matter universe with the positive energy and the partner anti-matter universe with the negative energy from the CPT symmetry. Our universe is the matter universe with the negative charges of electric charge (EC), lepton charge (LC) and color charge (CC). This first universe is made of three dark matter -, lepton -, and quark - primary black holes with the huge negative charges which cause the Coulomb repulsive forces much bigger than the gravitational forces. The huge Coulomb forces induce the inflation of the primary black holes, that decay to the super-massive black holes. The dark matter super-massive black holes surrounded by the normal matters and dark matters make the galaxies and galaxy clusters. The spiral arms of galaxies are closely related to the decay of the 3-D charged normal matter black holes to the 1-D charged normal matter black holes. The elementary leptons and quarks are created by the decay of the normal matter charged black holes, that is caused by the Coulomb forces much stronger than the gravitational forces. The Coulomb forces are very weak with the very small Coulomb constants (k1(EC) = kdd(EC) ) for the dark matters and very strong with the very big Coulomb constants (k2(EC) = knn(EC)) for the normal matters because of the non-communication of the photons between the dark matters and normal matters. The photons are charge dependent and mass independent. But the dark matters and normal matters have the similar and very weak gravitational forces because of the communication of the gravitons between the dark matters and normal matters. The gravitons are charge independent and mass dependent. Note that the three kinds of charges (EC, LC and CC) and one kind of mass (m) exist in our matter universe. The dark matters, leptons and quarks have the charge configurations of (EC), (EC,LC) and (EC,LC,CC), respectively. Partial masses of elementary fermions are calculated, and the proton spin crisis is explained. The charged black holes are not the singularities.


2018 ◽  
Vol 27 (14) ◽  
pp. 1846005 ◽  
Author(s):  
Tom Banks ◽  
W. Fischler

This essay outlines the Holographic Spacetime (HST) theory of cosmology and its relation to conventional theories of inflation. The predictions of the theory are compatible with observations, and one must hope for data on primordial gravitational waves or non-Gaussian fluctuations to distinguish it from conventional models. The model predicts an early era of structure formation, prior to the Big Bang. Understanding the fate of those structures requires complicated simulations that have not yet been done. The result of those calculations might falsify the model, or might provide a very economical framework for explaining dark matter and the generation of the baryon asymmetry.


2017 ◽  
Vol 24 (2) ◽  
pp. 186-211
Author(s):  
Sabina Tabacaru

Abstract This article focuses on sarcasm, for which the definitions have often been loose and confusing, integrating it into the concept of irony. My approach is based on a large corpus of examples taken from two contemporary television-series, which help identify the wide range of linguistic processes at the core of sarcastic utterances. I present a quantitative and descriptive analysis of the main processes found in two American television-series: House M.D. and The Big Bang Theory. The results show the intricate meanings created in sarcasm through various linguistic mechanisms, such as repetition, explicitation, metonymy, metaphor, shift of focus, reasoning, and rhetorical questions. This more holistic analysis, including a broad corpus of instances and a more detailed analysis of the examples, aims to fill the unexplored gaps in more classical analyses, emphasizing the complexities and implications that can be drawn in interaction.


2003 ◽  
Vol 208 ◽  
pp. 245-260
Author(s):  
C.S. Frenk

A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationaly dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure in now beginning to emerge.


Sign in / Sign up

Export Citation Format

Share Document