scholarly journals Systematic identification of signal integration by protein kinase A

2015 ◽  
Vol 112 (14) ◽  
pp. 4501-4506 ◽  
Author(s):  
Marie Filteau ◽  
Guillaume Diss ◽  
Francisco Torres-Quiroz ◽  
Alexandre K. Dubé ◽  
Andrea Schraffl ◽  
...  

Cellular processes and homeostasis control in eukaryotic cells is achieved by the action of regulatory proteins such as protein kinase A (PKA). Although the outbound signals from PKA directed to processes such as metabolism, growth, and aging have been well charted, what regulates this conserved regulator remains to be systematically identified to understand how it coordinates biological processes. Using a yeast PKA reporter assay, we identified genes that influence PKA activity by measuring protein–protein interactions between the regulatory and the two catalytic subunits of the PKA complex in 3,726 yeast genetic-deletion backgrounds grown on two carbon sources. Overall, nearly 500 genes were found to be connected directly or indirectly to PKA regulation, including 80 core regulators, denoting a wide diversity of signals regulating PKA, within and beyond the described upstream linear pathways. PKA regulators span multiple processes, including the antagonistic autophagy and methionine biosynthesis pathways. Our results converge toward mechanisms of PKA posttranslational regulation by lysine acetylation, which is conserved between yeast and humans and that, we show, regulates protein complex formation in mammals and carbohydrate storage and aging in yeast. Taken together, these results show that the extent of PKA input matches with its output, because this kinase receives information from upstream and downstream processes, and highlight how biological processes are interconnected and coordinated by PKA.

2006 ◽  
Vol 78 (24) ◽  
pp. 8265-8272 ◽  
Author(s):  
S. Adrian Saldanha ◽  
Gregory Kaler ◽  
Howard B. Cottam ◽  
Ruben Abagyan ◽  
Susan S. Taylor

2010 ◽  
Vol 21 (19) ◽  
pp. 3475-3486 ◽  
Author(s):  
Alexandre Soulard ◽  
Alessio Cremonesi ◽  
Suzette Moes ◽  
Frédéric Schütz ◽  
Paul Jenö ◽  
...  

Regulation of cell growth requires extensive coordination of several processes including transcription, ribosome biogenesis, translation, nutrient metabolism, and autophagy. In yeast, the protein kinases Target of Rapamycin (TOR) and protein kinase A (PKA) regulate these processes and are thereby the main activators of cell growth in response to nutrients. How TOR, PKA, and their corresponding signaling pathways are coordinated to control the same cellular processes is not understood. Quantitative analysis of the rapamycin-sensitive phosphoproteome combined with targeted analysis of PKA substrates suggests that TOR complex 1 (TORC1) activates PKA but only toward a subset of substrates. Furthermore, we show that TORC1 signaling impinges on BCY1, the negative regulatory subunit of PKA. Inhibition of TORC1 with rapamycin leads to BCY1 phosphorylation on several sites including T129. Phosphorylation of BCY1 T129 results in BCY1 activation and inhibition of PKA. TORC1 inhibits BCY1 T129 phosphorylation by phosphorylating and activating the S6K homolog SCH9 that in turn inhibits the MAP kinase MPK1. MPK1 phosphorylates BCY1 T129 directly. Thus, TORC1 activates PKA toward some substrates by preventing MPK1-mediated activation of BCY1.


Proteomes ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 37
Author(s):  
Anna Schmoker ◽  
Samuel Barritt ◽  
Marion Weir ◽  
Jacqueline Mann ◽  
Tyler Hogan ◽  
...  

The cAMP-dependent protein kinase A (PKA) is a serine/threonine kinase involved in many fundamental cellular processes, including migration and proliferation. Recently, we found that the Src family kinase Fyn phosphorylates the catalytic subunit of PKA (PKA-C) at Y69, thereby increasing PKA kinase activity. We also showed that Fyn induced the phosphorylation of cellular proteins within the PKA preferred target motif. This led to the hypothesis that Fyn could affect proteins in complex with PKA. To test this, we employed a quantitative mass spectrometry approach to identify Fyn-dependent binding partners in complex with PKA-C. We found Fyn enhanced the binding of PKA-C to several cytoskeletal regulators that localize to the centrosome and Golgi apparatus. Three of these Fyn-induced PKA interactors, AKAP9, PDE4DIP, and CDK5RAP2, were validated biochemically and were shown to exist in complex with Fyn and PKA in a glioblastoma cell line. Intriguingly, the complexes formed between PKA-C and these known AKAPs were dependent upon Fyn catalytic activity and expression levels. In addition, we identified Fyn-regulated phosphorylation sites on proteins in complex with PKA-C. We also identified and biochemically validated a novel PKA-C interactor, LARP4, which complexed with PKA in the absence of Fyn. These results demonstrate the ability of Fyn to influence the docking of PKA to specific cellular scaffolds and suggest that Fyn may affect the downstream substrates targeted by PKA.


2021 ◽  
Author(s):  
Timothy W. Church ◽  
Parul Tewatia ◽  
Saad Hannan ◽  
João Antunes ◽  
Olivia Eriksson ◽  
...  

Interplay between the second messengers cAMP and Ca2+ is a hallmark of dynamic cellular processes. A common motif is the opposition of the Ca2+-sensitive phosphatase calcineurin and the major cAMP receptor, protein kinase A (PKA). Calcineurin dephosphorylates sites primed by PKA to bring about changes including synaptic long-term depression (LTD). AKAP79 supports signaling of this type by anchoring PKA and calcineurin in tandem. In this study, we discovered that AKAP79 increases the rate of calcineurin dephosphorylation of type II PKA regulatory subunits by an order of magnitude. Fluorescent PKA activity reporter assays, supported by kinetic modeling, show how AKAP79-enhanced calcineurin activity enables suppression of PKA without altering cAMP levels by increasing PKA catalytic subunit capture rate. Experiments with hippocampal neurons indicate that this mechanism contributes towards LTD. This non-canonical mode of PKA regulation may underlie many other cellular processes.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Timothy W Church ◽  
Parul Tewatia ◽  
Saad Hannan ◽  
João Antunes ◽  
Olivia Eriksson ◽  
...  

Interplay between the second messengers cAMP and Ca2+ is a hallmark of dynamic cellular processes. A common motif is the opposition of the Ca2+-sensitive phosphatase calcineurin and the major cAMP receptor, protein kinase A (PKA). Calcineurin dephosphorylates sites primed by PKA to bring about changes including synaptic long-term depression (LTD). AKAP79 supports signaling of this type by anchoring PKA and calcineurin in tandem. In this study, we discovered that AKAP79 increases the rate of calcineurin dephosphorylation of type II PKA regulatory subunits by an order of magnitude. Fluorescent PKA activity reporter assays, supported by kinetic modeling, show how AKAP79-enhanced calcineurin activity enables suppression of PKA without altering cAMP levels by increasing PKA catalytic subunit capture rate. Experiments with hippocampal neurons indicate that this mechanism contributes towards LTD. This non-canonical mode of PKA regulation may underlie many other cellular processes.


2013 ◽  
Vol 41 (5) ◽  
pp. 1235-1241 ◽  
Author(s):  
Heinrich Heide ◽  
Ilka Wittig

Macromolecular complexes are involved in a broad spectrum of cellular processes including protein biosynthesis, protein secretion and degradation, metabolism, DNA replication and repair, and signal transduction along with other important biological processes. The analysis of protein complexes in health and disease is important to gain insights into cellular physiology and pathophysiology. In the last few decades, research has focused on the identification and the dynamics of macromolecular complexes. Several techniques have been developed to isolate native protein complexes from cells and tissues to allow further characterization by microscopic and proteomic analysis. In the present paper, we provide a brief overview of proteomic methods that can be used to identify protein–protein interactions, focusing on recent developments to study the entire complexome of a biological sample.


2004 ◽  
Vol 82 (6) ◽  
pp. 681-693 ◽  
Author(s):  
Mary Ellen K Olsten ◽  
David W Litchfield

CK2 is a highly conserved, ubiquitously expressed protein serine/threonine kinase present in all eukaryotes. Circumscribed as having a vast array of substrates located in a number of cellular compartments, CK2 has been implicated in critical cellular processes such as proliferation, apoptosis, differentiation, and transformation. Despite advances in elucidating its substrates and involvement in cellular regulation, its precise mode of regulation remains poorly defined. In this respect, there are currently conflicting views as to whether CK2 is constitutively active or modulated in response to specific stimuli. Perhaps an important consideration in resolving these apparent discrepancies is recognition of the existence of many discrete CK2 subpopulations that are distinguished from one another by localization or association with distinct cellular components. The existence of these subpopulations brings to light the possibility of each population being regulated independently rather than the entire cellular CK2 content being regulated globally. Logically, each local population may then be regulated in a distinct manner to carry out its precise function(s). This review will examine those mechanisms including regulated expression and assembly of CK2 subunits, phosphorylation of CK2, and interactions with small molecules or cellular proteins that could contribute to the local regulation of distinct CK2 populations.Key words: protein kinase CK2, regulation, phosphorylation, protein-protein interactions, HIKE domains, regulatory interactions, CKIP-1, signal transduction.


2016 ◽  
Vol 44 (3) ◽  
pp. 917-924 ◽  
Author(s):  
Daniel Poglayen ◽  
Manuel Alejandro Marín-López ◽  
Jaume Bonet ◽  
Oriol Fornes ◽  
Javier Garcia-Garcia ◽  
...  

Virtually all the biological processes that occur inside or outside cells are mediated by protein–protein interactions (PPIs). Hence, the charting and description of the PPI network, initially in organisms, the interactome, but more recently in specific tissues, is essential to fully understand cellular processes both in health and disease. The study of PPIs is also at the heart of renewed efforts in the medical and biotechnological arena in the quest of new therapeutic targets and drugs. Here, we present a mini review of 11 computational tools and resources tools developed by us to address different aspects of PPIs: from interactome level to their atomic 3D structural details. We provided details on each specific resource, aims and purpose and compare with equivalent tools in the literature. All the tools are presented in a centralized, one-stop, web site: InteractoMIX (http://interactomix.com).


2015 ◽  
Vol 71 (8) ◽  
pp. 1088-1093 ◽  
Author(s):  
Denis Kudlinzki ◽  
Verena L. Linhard ◽  
Krishna Saxena ◽  
Sridhar Sreeramulu ◽  
Santosh Gande ◽  
...  

Protein kinases (PKs) are dynamic regulators of numerous cellular processes. Their phosphorylation activity is determined by the conserved kinase core structure, which is maintained by the interaction and dynamics with associated domains or interacting proteins. The prototype enzyme for investigations to understand the activity and regulation of PKs is the catalytic subunit of cAMP-dependent protein kinase (PKAc). Major effects of functional regulation and ligand binding are driven by only minor structural modulations in protein–protein interactions. In order to resolve such minor structural differences, very high resolution structures are required. Here, the high-resolution X-ray structure of PKAc fromCricetulus griseusis reported.


The Analyst ◽  
2015 ◽  
Vol 140 (19) ◽  
pp. 6588-6594 ◽  
Author(s):  
Deok-Hoon Kong ◽  
Se-Hui Jung ◽  
Hye-Yoon Jeon ◽  
Woo-Jin Kim ◽  
Young-Myeong Kim ◽  
...  

Protein kinase A (PKA) plays a crucial role in several biological processes; however, there is no assay with sufficient sensitivity and specificity to determine serological PKA (sPKA) activity.


Sign in / Sign up

Export Citation Format

Share Document