scholarly journals Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus

2015 ◽  
Vol 112 (12) ◽  
pp. 3680-3685 ◽  
Author(s):  
Fabio Bagnoli ◽  
Maria Rita Fontana ◽  
Elisabetta Soldaini ◽  
Ravi P. N. Mishra ◽  
Luigi Fiaschi ◽  
...  

Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S. aureus pathogenesis. They include the secreted factors α-hemolysin (Hla), ess extracellular A (EsxA), and ess extracellular B (EsxB) and the two surface proteins ferric hydroxamate uptake D2 and conserved staphylococcal antigen 1A. The combined vaccine antigens formulated with aluminum hydroxide induced antibodies with opsonophagocytic and functional activities and provided consistent protection in four mouse models when challenged with a panel of epidemiologically relevant S. aureus strains. The importance of antibodies in protection was demonstrated by passive transfer experiments. Furthermore, when formulated with a toll-like receptor 7-dependent (TLR7) agonist recently designed and developed in our laboratories (SMIP.7–10) adsorbed to alum, the five antigens provided close to 100% protection against four different staphylococcal strains. The new formulation induced not only high antibody titers but also a Th1 skewed immune response as judged by antibody isotype and cytokine profiles. In addition, low frequencies of IL-17–secreting T cells were also observed. Altogether, our data demonstrate that the rational selection of mixtures of conserved antigens combined with Th1/Th17 adjuvants can lead to promising vaccine formulations against S. aureus.

Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 964
Author(s):  
Kelsey A. Pilewski ◽  
Kevin J. Kramer ◽  
Ivelin S. Georgiev

Vaccination remains one of the most successful medical interventions in history, significantly decreasing morbidity and mortality associated with, or even eradicating, numerous infectious diseases. Although traditional immunization strategies have recently proven insufficient in the face of many highly mutable and emerging pathogens, modern strategies aim to rationally engineer a single antigen or cocktail of antigens to generate a focused, protective immune response. However, the effect of cocktail vaccination (simultaneous immunization with multiple immunogens) on the antibody response to each individual antigen within the combination, remains largely unstudied. To investigate whether immunization with a cocktail of diverse antigens would result in decreased antibody titer against each unique antigen in the cocktail compared to immunization with each antigen alone, we immunized mice with surface proteins from uropathogenic Escherichia coli, Mycobacterium tuberculosis, and Neisseria meningitides, and monitored the development of antigen-specific IgG antibody responses. We found that antigen-specific endpoint antibody titers were comparable across immunization groups by study conclusion (day 70). Further, we discovered that although cocktail-immunized mice initially elicited more robust antibody responses, the rate of titer development decreases significantly over time compared to single antigen-immunized mice. Investigating the basic properties that govern the development of antigen-specific antibody responses will help inform the design of future combination immunization regimens.


2016 ◽  
Vol 60 (10) ◽  
pp. 6333-6340 ◽  
Author(s):  
Binh An Diep ◽  
Vien T. M. Le ◽  
Zehra C. Visram ◽  
Harald Rouha ◽  
Lukas Stulik ◽  
...  

ABSTRACTCommunity-associated methicillin-resistantStaphylococcus aureus(CA-MRSA), especially the USA300 pulsotype, is a frequent cause of skin and soft tissue infections and severe pneumonia. Despite appropriate antibiotic treatment, complications are common and pneumonia is associated with high mortality.S. aureusstrains express multiple cytotoxins, including alpha-hemolysin (Hla) and up to five bicomponent leukocidins that specifically target phagocytic cells for lysis. CA-MRSA USA300 strains carry the genes for all six cytotoxins. Species specificity of the leukocidins greatly contributes to the ambiguity regarding their role inS. aureuspathogenesis. We performed a comparative analysis of the leukocidin susceptibility of human, rabbit, and mouse polymorphonuclear leukocytes (PMNs) to assess the translational value of mouse and rabbitS. aureusmodels. We found that mouse PMNs were largely resistant to LukSF-PV, HlgAB, and HlgCB and susceptible only to LukED, whereas rabbit and human PMNs were highly sensitive to all these cytotoxins. In the rabbit pneumonia model with a USA300 CA-MRSA strain, passive immunization with a previously identified human monoclonal antibody (MAb), Hla-F#5, which cross-neutralizes Hla, LukSF-PV, HlgAB, HlgCB, and LukED, provided full protection, whereas an Hla-specific MAb was only partially protective. In the mouse USA300 CA-MRSA pneumonia model, both types of antibodies demonstrated full protection, suggesting that Hla, but not leukocidin(s), is the principal virulence determinant in mice. As the rabbit recapitulates the high susceptibility to leukocidins characteristic of humans, this species represents a valuable model for assessing novel, cytotoxin-targeting anti-S. aureustherapeutic approaches.


2014 ◽  
Vol 21 (5) ◽  
pp. 622-627 ◽  
Author(s):  
Christopher P. Mocca ◽  
Rebecca A. Brady ◽  
Drusilla L. Burns

ABSTRACTDue to the emergence of highly virulent community-associated methicillin-resistantStaphylococcus aureus(CA-MRSA) infections,S. aureushas become a major threat to public health. A majority of CA-MRSA skin and soft tissue infections in the United States are caused byS. aureusUSA300 strains that are known to produce high levels of alpha hemolysin (Hla). Therefore, vaccines that contain inactivated forms of this toxin are currently being developed. In this study, we sought to determine the immune mechanisms of protection for this antigen using a vaccine composed of a genetically inactivated form of Hla (HlaH35L). Using a murine model of skin and soft tissue infections (SSTI), we found that BALB/c mice were protected by vaccination with HlaH35L; however, Jh mice, which are deficient in mature B lymphocytes and lack IgM and IgG in their serum, were not protected. Passive immunization with anti-HlaH35L antibodies conferred protection against bacterial colonization. Moreover, we found a positive correlation between the total antibody concentration induced by active vaccination and reduced bacterial levels. Animals that developed detectable neutralizing antibody titers after active vaccination were significantly protected from infection. These data demonstrate that antibodies to Hla represent the major mechanism of protection afforded by active vaccination with inactivated Hla in this murine model of SSTI, and in this disease model, antibody levels correlate with protection. These results provide important information for the future development and evaluation ofS. aureusvaccines.


PEDIATRICS ◽  
1963 ◽  
Vol 32 (4) ◽  
pp. 599-609
Author(s):  
Geoffrey Edsall

Passive immunization has existed for over 70 years, ever since Von Behring and Kitasato demonstrated its effectiveness in neutralizing diphtheria toxin. In fact, at first glance one might think that there was little new to say on this subject. However, the very fact that its concepts and practices have been so long accepted and–in the minds of many–have fallen into the pattern of purely routine procedures, is in itself sufficient justification to re-examine the subject. In addition, moreover, there have been a number of changes in the range of diseases for which passive immunization may be employed, the type of antiserum used, and the guiding principles for use of such preparations. Therefore, it may be timely to deal with some of the present considerations that apply to passive immunization, its prospects, its scope, and its limitations. At the risk of repeating old and familiar cliches it appears desirable to summarize, at first, the guiding principles which apply to the effectiveness (or ineffectiveness) of passive immunization. First of all, it is well established that some techniques of passive immunization are highly effective–e.g., diphtheria prophylaxis with antitoxin; some are very useful but fall short of the ideal of routine success with the purpose intended–e.g., the use of gamma-globulin for the modification of measles; whereas others are of relatively uncertain value so that their usefulness in medical practice still continues to be debated–e.g., gas gangrene antitoxin. The reasons for such great disparity in the efficacy of different antisera cannot easily be put into generalizations, but surely the varied pathogenesis of the diseases in question must be a major factor, as well as the fact that high antibody titers can readily be obtained for some such sera, whereas they are difficult or impossible to achieve with others.


2021 ◽  
Author(s):  
Astha Thakkar ◽  
Jesus Gonzalez Lugo ◽  
Niyati Goradia ◽  
Radhika Gali ◽  
Lauren C. Shapiro ◽  
...  

As COVID-19 has been shown to adversely affect patients with cancer, prophylactic strategies are critically needed. We determined the immunogenicity of COVID-19 vaccination in a cohort of cancer patients that had received full dosing with one of the FDA-approved COVID-19 vaccines. 201 oncology patients underwent anti-spike protein SARS-CoV-2 IgG testing post-vaccination and demonstrated a high rate of seroconversion (94%) overall. When compared to solid tumors (98%), a significantly lower rate of seroconversion was observed in patients with hematological malignancies (85%), particularly recipients of anti-CD20 therapies (70%) and stem cell transplantation (74%). Patients receiving immune checkpoint inhibitor therapy (97%) or hormonal therapies (100%) demonstrated high seroconversion post-vaccination. Patients with prior COVID-19 infection demonstrated higher anti-spike IgG titers post-vaccination. Relatively lower IgG titers were noted following vaccination with the adenoviral when compared to the mRNA-based vaccines. These data demonstrate generally high immunogenicity of COVID-19 vaccination in oncology patients and identify vulnerable cohorts that need novel vaccination or passive immunization strategies.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Shauna D. Drumm ◽  
Rebecca Owens ◽  
Jennifer Mitchell ◽  
Orla M. Keane

In Ireland, Staphylococcus aureus is the most common cause of intramammary infection (IMI) in cattle with the bovine-adapted lineages CC151 and CC97 most commonly found. Surface proteins play a major role in establishing and maintaining the infection. A previous study revealed that a strain from the CC151 lineage showed significant decay in genes encoding predicted surface proteins. Twenty-three S. aureus strains, twelve belonging to CC151 and eleven belonging to CC97, isolated from clinical IMI, were sequenced and genes encoding cell wall anchored (CWA) proteins predicted. Analysis showed that a minority of genes encoding putative CWA proteins were intact in the CC151 strains compared to CC97. Of the 26 known CWA proteins in S. aureus, the CC151 strains only encoded 10 intact genes while CC97 encoded on average 18 genes. Also within the CC97 lineage, the repertoire of genes varied depending on individual strains, with strains encoding between 17-20 intact genes. Although CC151 is reported to internalize within bovine host cells, it does so in a fibronectin-binding protein (FnBPA and FnBPB) independent manner. In-vitro assays were performed and results showed that strains from CC151, and surprisingly also CC97, weakly bound bovine fibronectin and that the FnBPs were poorly expressed in both these lineages. Mass spectrometry analysis of cell wall extracts revealed that SdrE and AdsA were the most highly expressed CWA proteins in both lineages. These results demonstrate significant differences between CC151 and CC97 in their repertoire of genes encoding CWA proteins, which may impact immune recognition of these strains and their interactions with host cells.


2021 ◽  
Author(s):  
Xiang-Na Guan ◽  
Tao Zhang ◽  
Teng Yang ◽  
Ze Dong ◽  
Song Yang ◽  
...  

The housekeeping sortase A (SrtA), a membrane-associated cysteine transpeptidase, is responsible for anchoring surface proteins to the cell wall peptidoglycan in Gram-positive bacteria. This process is essential for the regulation...


2020 ◽  
Vol 295 (29) ◽  
pp. 10008-10022 ◽  
Author(s):  
Giampiero Pietrocola ◽  
Angelica Pellegrini ◽  
Mariangela J. Alfeo ◽  
Loredana Marchese ◽  
Timothy J. Foster ◽  
...  

Staphylococcus aureus is an important bacterial pathogen that can cause a wide spectrum of diseases in humans and other animals. S. aureus expresses a variety of virulence factors that promote infection with this pathogen. These include cell-surface proteins that mediate adherence of the bacterial cells to host extracellular matrix components, such as fibronectin and fibrinogen. Here, using immunoblotting, ELISA, and surface plasmon resonance analysis, we report that the iron-regulated surface determinant B (IsdB) protein, besides being involved in heme transport, plays a novel role as a receptor for the plasma and extracellular matrix protein vitronectin (Vn). Vn-binding activity was expressed by staphylococcal strains grown under iron starvation conditions when Isd proteins are expressed. Recombinant IsdB bound Vn dose dependently and specifically. Both near-iron transporter motifs NEAT1 and NEAT2 of IsdB individually bound Vn in a saturable manner, with KD values in the range of 16–18 nm. Binding of Vn to IsdB was specifically blocked by heparin and reduced at high ionic strength. Furthermore, IsdB-expressing bacterial cells bound significantly higher amounts of Vn from human plasma than did an isdB mutant. Adherence to and invasion of epithelial and endothelial cells by IsdB-expressing S. aureus cells was promoted by Vn, and an αvβ3 integrin-blocking mAb or cilengitide inhibited adherence and invasion by staphylococci, suggesting that Vn acts as a bridge between IsdB and host αvβ3 integrin.


Sign in / Sign up

Export Citation Format

Share Document