scholarly journals Conformational kinetics reveals affinities of protein conformational states

2015 ◽  
Vol 112 (30) ◽  
pp. 9352-9357 ◽  
Author(s):  
Kyle G. Daniels ◽  
Yang Suo ◽  
Terrence G. Oas

Most biological reactions rely on interplay between binding and changes in both macromolecular structure and dynamics. Practical understanding of this interplay requires detection of critical intermediates and determination of their binding and conformational characteristics. However, many of these species are only transiently present and they have often been overlooked in mechanistic studies of reactions that couple binding to conformational change. We monitored the kinetics of ligand-induced conformational changes in a small protein using six different ligands. We analyzed the kinetic data to simultaneously determine both binding affinities for the conformational states and the rate constants of conformational change. The approach we used is sufficiently robust to determine the affinities of three conformational states and detect even modest differences in the protein’s affinities for relatively similar ligands. Ligand binding favors higher-affinity conformational states by increasing forward conformational rate constants and/or decreasing reverse conformational rate constants. The amounts by which forward rate constants increase and reverse rate constants decrease are proportional to the ratio of affinities of the conformational states. We also show that both the affinity ratio and another parameter, which quantifies the changes in conformational rate constants upon ligand binding, are strong determinants of the mechanism (conformational selection and/or induced fit) of molecular recognition. Our results highlight the utility of analyzing the kinetics of conformational changes to determine affinities that cannot be determined from equilibrium experiments. Most importantly, they demonstrate an inextricable link between conformational dynamics and the binding affinities of conformational states.

1992 ◽  
Vol 285 (2) ◽  
pp. 419-425 ◽  
Author(s):  
U Christensen ◽  
L Mølgaard

The kinetics of a series of Glu-plasminogen ligand-binding processes were investigated at pH 7.8 and 25 degrees C (in 0.1 M-NaCl). The ligands include compounds analogous to C-terminal lysine residues and to normal lysine residues. Changes of the Glu-plasminogen protein fluorescence were measured in a stopped-flow instrument as a function of time after rapid mixing of Glu-plasminogen and ligand at various concentrations. Large positive fluorescence changes (approximately 10%) accompany the ligand-induced conformational changes of Glu-plasminogen resulting from binding at weak lysine-binding sites. Detailed studies of the concentration-dependencies of the equilibrium signals and the rate constants of the process induced by various ligands showed the conformational change to involve two sites in a concerted positive co-operative process with three steps: (i) binding of a ligand at a very weak lysine-binding site that preferentially, but not exclusively, binds C-terminal-type lysine ligands, (ii) the rate-determining actual-conformational-change step and (iii) binding of one more lysine ligand at a second weak lysine-binding site that then binds the ligand more tightly. Further, totally independent initial small negative fluorescence changes (approximately 2-4%) corresponding to binding at the strong lysine-binding site of kringle 1 [Sottrup-Jensen, Claeys, Zajdel, Petersen & Magnusson (1978) Prog. Chem. Fibrinolysis Thrombolysis 3, 191-209] were observed for the C-terminal-type ligands. The finding that the conformational change in Glu-plasminogen involves two weak lysine-binding sites indicates that the effect cannot be assigned to any single kringle and that the problem of whether kringle 4 or kringle 5 is responsible for the process resolves itself. Probably kringle 4 and 5 are both participating. The involvement of two lysine binding-sites further makes the high specificity of Glu-plasminogen effectors more conceivable.


2020 ◽  
Author(s):  
Evelyn Ploetz ◽  
Gea K. Schuurman-Wolters ◽  
Niels Zijlstra ◽  
Amarins W. Jager ◽  
Douglas A. Griffith ◽  
...  

ABSTRACTThe ATP-binding cassette transporter GlnPQ is an essential uptake system that transports glutamine, glutamic acid, and asparagine in Gram-positive bacteria. It features two extracytoplasmic substrate-binding domains (SBDs) that are linked in tandem to the transmembrane domain of the transporter. The two SBDs differ in their ligand specificities, binding affinities and their distance to the transmembrane domain. Here, we elucidate the effects of the tandem arrangement of the domains on the biochemical, biophysical and structural properties of the protein. For this, we determined the crystal structure of the ligand-free tandem SBD1-2 protein from L. lactis in the absence of the transporter and compared the tandem to the isolated SBDs. We also used isothermal titration calorimetry to determine the ligand-binding affinity of the SBDs and single-molecule Förster-resonance energy transfer (smFRET) to relate ligand binding to conformational changes in each of the domains of the tandem. We show that substrate binding and conformational changes are not notably affected by the presence of the adjoining domain in the wild-type protein, and changes only occur when the linker between the domains is shortened. In a proof-of-concept experiment, we combine smFRET with protein-induced fluorescence enhancement and show that a decrease in SBD linker length is observed as a linear increase in donor-brightness for SBD2 while we can still monitor the conformational states (open/closed) of SBD1. These results demonstrate the feasibility of PIFE-FRET to monitor protein-protein interactions and conformational states simultaneously.HIGHLIGHTSResolved crystal structure of tandem SBD1-2 of GlnPQ from Lactococcus lactisConformational states and ligand binding affinities of individual domains SBD1 and SBD2 are similar to tandem SBD1-2No cooperative effects are seen for different ligands for SBDs in the tandemProof of concept experiments show that PIFE-FRET can monitor SBD conformations and protein-protein interaction simultaneously


1999 ◽  
Vol 64 (11) ◽  
pp. 1770-1779 ◽  
Author(s):  
Herbert Mayr ◽  
Karl-Heinz Müller

The kinetics of the electrophilic additions of four diarylcarbenium ions (4a-4d) to tricarbonyl(η4-cyclohepta-1,3,5-triene)iron (1) have been studied photometrically. The second-order rate constants match the linear Gibbs energy relationship log k20 °C = s(E + N) and yield the nucleophilicity parameter N(1) = 3.69. It is concluded that electrophiles with E ≥ -9 will react with complex 1 at ambient temperature.


Author(s):  
Yasujiro Murata ◽  
Shih-Ching Chuang ◽  
Fumiyuki Tanabe ◽  
Michihisa Murata ◽  
Koichi Komatsu

We present our study on the recognition of hydrogen isotopes by an open-cage fullerene through determination of binding affinity of isotopes H 2 /HD/D 2 with the open-cage fullerene and comparison of their relative molecular sizes through kinetic-isotope-release experiments. We took advantage of isotope H 2 /D 2 exchange that generated an equilibrium mixture of H 2 /HD/D 2 in a stainless steel autoclave to conduct high-pressure hydrogen insertion into an open-cage fullerene. The equilibrium constants of three isotopes with the open-cage fullerene were determined at various pressures and temperatures. Our results show a higher equilibrium constant for HD into open-cage fullerene than the other two isotopomers, which is consistent with its dipolar nature. D 2 molecule generally binds stronger than H 2 because of its heavier mass; however, the affinity for H 2 becomes larger than D 2 at lower temperature, when size effect becomes dominant. We further investigated the kinetics of H 2 /HD/D 2 release from open-cage fullerene, proving their relative escaping rates. D 2 was found to be the smallest and H 2 the largest molecule. This notion has not only supported the observed inversion of relative binding affinities between H 2 and D 2 , but also demonstrated that comparison of size difference of single molecules through non-convalent kinetic-isotope effect was applicable.


1989 ◽  
Vol 259 (3) ◽  
pp. 893-896 ◽  
Author(s):  
C E King ◽  
P T Hawkins ◽  
L R Stephens ◽  
R H Michell

When intact human erythrocytes are incubated at metabolic steady state in a chloride-free medium containing [32P]Pi, there is rapid labelling of the gamma-phosphate of ATP, followed by a slower labelling of the monoester phosphate groups of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] [King, Stephens, Hawkins, Guy & Michell (1987) Biochem. J. 244, 209-217]. We have analysed the early kinetics of the labelling of these phosphate groups, in order to determine: (a) the steady-state rates of the interconversions of phosphatidylinositol, PtdIns4P and PtdIns(4,5)P2; and (b) the fractions of the total cellular complement of PtdIns4P and PtdIns(4,5)P2 that participate in this steady-state turnover. The experimental data most closely fit a pattern of PtdIns4P and PtdIns(4,5)P2 turnover in which one-quarter of the total cellular complement of each lipid is in the metabolic pool that participates in rapid metabolic turnover, with rate constants of 0.028 min-1 for the interconversion of PtdIns and PtdIns4P, and of 0.010 min-1 for the PtdIns4P/PtdIns(4,5)P2 cycle. These rate constants represent metabolic fluxes of approx. 2.1 nmol of lipid/h per ml of packed erythrocytes between PtdIns and PtdIns4P and of approx. 5.7 nmol/h per ml of cells between PtdIns4P and PtdIns(4,5)P2.


2019 ◽  
Vol 20 (6) ◽  
pp. 1444 ◽  
Author(s):  
Soria Iatmanen-Harbi ◽  
lucile Senicourt ◽  
Vassilios Papadopoulos ◽  
Olivier Lequin ◽  
Jean-Jacques Lacapere

The optimization of translocator protein (TSPO) ligands for Positron Emission Tomography as well as for the modulation of neurosteroids is a critical necessity for the development of TSPO-based diagnostics and therapeutics of neuropsychiatrics and neurodegenerative disorders. Structural hints on the interaction site and ligand binding mechanism are essential for the development of efficient TSPO ligands. Recently published atomic structures of recombinant mammalian and bacterial TSPO1, bound with either the high-affinity drug ligand PK 11195 or protoporphyrin IX, have revealed the membrane protein topology and the ligand binding pocket. The ligand is surrounded by amino acids from the five transmembrane helices as well as the cytosolic loops. However, the precise mechanism of ligand binding remains unknown. Previous biochemical studies had suggested that ligand selectivity and binding was governed by these loops. We performed site-directed mutagenesis to further test this hypothesis and measured the binding affinities. We show that aromatic residues (Y34 and F100) from the cytosolic loops contribute to PK 11195 access to its binding site. Limited proteolytic digestion, circular dichroism and solution two-dimensional (2-D) NMR using selective amino acid labelling provide information on the intramolecular flexibility and conformational changes in the TSPO structure upon PK 11195 binding. We also discuss the differences in the PK 11195 binding affinities and the primary structure between TSPO (TSPO1) and its paralogous gene product TSPO2.


RSC Advances ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 2414-2421 ◽  
Author(s):  
Abdelmoneim Mars ◽  
Wicem Argoubi ◽  
Sami Ben Aoun ◽  
Noureddine Raouafi

ApoE Alzheimer's disease biomarker can be sensitively detected by a label-free platform using flexible ferrocene-terminated alkyl chains. The immunorecognition triggers conformational changes, which improve the rate constants of electron-transfer.


1983 ◽  
Vol 61 (1) ◽  
pp. 171-178 ◽  
Author(s):  
J. Peter Guthrie ◽  
Brian A. Dawson

In aqueous sodium hydroxide solutions at 25 °C, 3-methyl-2-butenal, 1c, undergoes retroaldol cleavage to acetone and acetaldehyde. The kinetics of the retroaldol reaction were followed spectrophotometrically at 242 nm and showed simple first order behavior. When 3-methyl-3-hydroxybutanal, 2c, was added to aqueous sodium hydroxide solutions at 25 °C, there was an initial increase in absorbance at 242 nm, attributed to formation of 1c, followed by a 20-fold slower decrease; the rate of the slow decrease matches the rate of disappearance of 1c under the same conditions. Analysis of the kinetics allows determination of the three rate constants needed to describe the system: khyd = 0.00342; kdehyd = 0.00832; kretro = 0.0564; all M−1 s−1. The equilibrium constant for enone hydration is 0.41. Rate constants for the analogous reactions for acrolein and crotonaldehyde could be obtained from the literature. There is a reasonable rate–equilibrium correlation for the retroaldol step. For the enone hydration step, rate and equilibrium constants respond differently to replacement of hydrogen by methyl. It is proposed that this results from release of strain after the rate-determining step by rotation about a single bond; this decrease in strain is reflected in the equilibrium constant but not in the rate constant.


2021 ◽  
Author(s):  
Yunhui Ge ◽  
Vincent Voelz

Accurate and efficient simulation of the thermodynamics and kinetics of protein-ligand interactions is crucial for computational drug discovery. Multiensemble Markov Model (MEMM) estimators can provide estimates of both binding rates and affinities from collections of short trajectories, but have not been systematically explored for situations when a ligand is decoupled through scaling of non-bonded interactions. In this work, we compare the performance of two MEMM approaches for estimating ligand binding affinities and rates: (1) the transition-based reweighting analysis method (TRAM) and (2) a Maximum Caliber (MaxCal) based method. As a test system, we construct a small host-guest system where the ligand is a single uncharged Lennard-Jones (LJ) particle, and the receptor is an 11-particle icosahedral pocket made from the same atom type. To realistically mimic a protein-ligand binding system, the LJ ε parameter was tuned, and the system placed in a periodic box with 860 TIP3P water molecules. A benchmark was performed using over 80 μs of unbiased simulation, and an 18-state Markov state model used to estimate reference binding affinities and rates. We then tested the performance of TRAM and MaxCal when challenged with limited data. Both TRAM and MaxCal approaches perform better than conventional MSMs, with TRAM showing better convergence and accuracy. We find that subsampling of trajectories to remove time correlation improves the accuracy of both TRAM and MaxCal, and that in most cases only a single biased ensemble to enhance sampled transitions is required to make accurate estimates.


Sign in / Sign up

Export Citation Format

Share Document