scholarly journals Transcription factor Bcl11b sustains iNKT1 and iNKT2 cell programs, restricts iNKT17 cell program, and governs iNKT cell survival

2016 ◽  
Vol 113 (27) ◽  
pp. 7608-7613 ◽  
Author(s):  
Mohammad Nizam Uddin ◽  
Dil Afroz Sultana ◽  
Kyle J. Lorentsen ◽  
Jonathan J. Cho ◽  
Mariana E. Kirst ◽  
...  

Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipid antigens and play critical roles in regulation of immune responses. Based on expression of the transcription factors (TFs) Tbet, Plzf, and Rorγt, iNKT cells have been classified in effector subsets that emerge in the thymus, namely, iNKT1, iNKT2, and iNKT17. Deficiency in the TF Bcl11b in double-positive (DP) thymocytes has been shown to cause absence of iNKT cells in the thymus and periphery due to defective self glycolipid processing and presentation by DP thymocytes and undefined intrinsic alterations in iNKT precursors. We used a model of cre-mediated postselection deletion of Bcl11b in iNKT cells to determine its intrinsic role in these cells. We found that Bcl11b is expressed equivalently in all three effector iNKT subsets, and its removal caused a reduction in the numbers of iNKT1 and iNKT2 cells, but not in the numbers of iNKT17 cells. Additionally, we show that Bcl11b sustains subset-specific cytokine production by iNKT1 and iNKT2 cells and restricts expression of iNKT17 genes in iNKT1 and iNKT2 subsets, overall restraining the iNKT17 program in iNKT cells. The total numbers of iNKT cells were reduced in the absence of Bcl11b both in the thymus and periphery, associated with the decrease in iNKT1 and iNKT2 cell numbers and decrease in survival, related to changes in survival/apoptosis genes. Thus, these results extend our understanding of the role of Bcl11b in iNKT cells beyond their selection and demonstrate that Bcl11b is a key regulator of iNKT effector subsets, their function, identity, and survival.

2015 ◽  
Vol 212 (5) ◽  
pp. 793-807 ◽  
Author(s):  
Tiffany Carr ◽  
Veena Krishnamoorthy ◽  
Shuyang Yu ◽  
Hai-Hui Xue ◽  
Barbara L. Kee ◽  
...  

Invariant natural killer T cells (iNKT cells) are innate-like T cells that rapidly produce cytokines that impact antimicrobial immune responses, asthma, and autoimmunity. These cells acquire multiple effector fates during their thymic development that parallel those of CD4+ T helper cells. The number of Th2-type effector iNKT cells is variable in different strains of mice, and their number impacts CD8 T, dendritic, and B cell function. Here we demonstrate a unique function for the transcription factor lymphoid enhancer factor 1 (LEF1) in the postselection expansion of iNKT cells through a direct induction of the CD127 component of the receptor for interleukin-7 (IL-7) and the transcription factor c-myc. LEF1 also directly augments expression of the effector fate–specifying transcription factor GATA3, thus promoting the development of Th2-like effector iNKT cells that produce IL-4, including those that also produce interferon-γ. Our data reveal LEF1 as a central regulator of iNKT cell number and Th2-type effector differentiation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mallory Paynich Murray ◽  
Isaac Engel ◽  
Grégory Seumois ◽  
Sara Herrera-De la Mata ◽  
Sandy Lucette Rosales ◽  
...  

AbstractInvariant natural killer T cells (iNKT cells) differentiate into thymic and peripheral NKT1, NKT2 and NKT17 subsets. Here we use RNA-seq and ATAC-seq analyses and show iNKT subsets are similar, regardless of tissue location. Lung iNKT cell subsets possess the most distinct location-specific features, shared with other innate lymphocytes in the lung, possibly consistent with increased activation. Following antigenic stimulation, iNKT cells undergo chromatin and transcriptional changes delineating two populations: one similar to follicular helper T cells and the other NK or effector like. Phenotypic analysis indicates these changes are observed long-term, suggesting that iNKT cells gene programs are not fixed, but they are capable of chromatin remodeling after antigen to give rise to additional subsets.


1997 ◽  
Vol 186 (7) ◽  
pp. 999-1014 ◽  
Author(s):  
Hideaki Ishikawa ◽  
Daniel Carrasco ◽  
Estefania Claudio ◽  
Rolf-Peter Ryseck ◽  
Rodrigo Bravo

The nfkb2 gene encodes the p100 precursor which produces the p52 protein after proteolytic cleavage of its COOH-terminal domain. Although the p52 product can act as an alternative subunit of NF-κB, the p100 precursor is believed to function as an inhibitor of Rel/NF-κB activity by cytoplasmic retention of Rel/NF-κB complexes, like other members of the IκB family. However, the physiological relevance of the p100 precursor as an IκB molecule has not been understood. To assess the role of the precursor in vivo, we generated, by gene targeting, mice lacking p100 but still containing a functional p52 protein. Mice with a homozygous deletion of the COOH-terminal ankyrin repeats of NF-κB2 (p100−/−) had marked gastric hyperplasia, resulting in early postnatal death. p100−/− animals also presented histopathological alterations of hematopoietic tissues, enlarged lymph nodes, increased lymphocyte proliferation in response to several stimuli, and enhanced cytokine production in activated T cells. Dramatic induction of nuclear κB–binding activity composed of p52-containing complexes was found in all tissues examined and also in stimulated lymphocytes. Thus, the p100 precursor is essential for the proper regulation of p52-containing Rel/NF-κB complexes in various cell types and its absence cannot be efficiently compensated for by other IκB proteins.


Blood ◽  
2011 ◽  
Vol 117 (12) ◽  
pp. 3370-3381 ◽  
Author(s):  
Ingrid Saba ◽  
Christian Kosan ◽  
Lothar Vassen ◽  
Tarik Möröy

Abstract T cells originate from early T lineage precursors that have entered the thymus and differentiate through well-defined steps. Mice deficient for the BTB/POZ domain of zinc finger protein-1 (Miz-1) almost entirely lack early T lineage precursors and have a CD4−CD8− to CD4+CD8+ block causing a strong reduction in thymic cellularity. Miz-1ΔPOZ pro-T cells cannot differentiate in vitro and are unable to relay signals from the interleukin-7R (IL-7R). Both STAT5 phosphorylation and Bcl-2 up-regulation are perturbed. The high expression levels of SOCS1 found in Miz-1ΔPOZ cells probably cause these alterations. Moreover, Miz-1 can bind to the SOCS1 promoter, suggesting that Miz-1 deficiency causes a deregulation of SOCS1. Transgenic overexpression of Bcl-2 or inhibition of SOCS1 restored pro-T cell numbers and their ability to differentiate, supporting the hypothesis that Miz-1 is required for the regulation of the IL-7/IL-7R/STAT5/Bcl-2 signaling pathway by monitoring the expression levels of SOCS1.


Blood ◽  
2010 ◽  
Vol 115 (3) ◽  
pp. 541-548 ◽  
Author(s):  
Yong Tang ◽  
Marie J. Desierto ◽  
Jichun Chen ◽  
Neal S. Young

Abstract The transcription factor T-bet is a key regulator of type 1 immune responses. We examined the role of T-bet in an animal model of immune-mediated bone marrow (BM) failure using mice carrying a germline T-bet gene deletion (T-bet−/−). In comparison with normal C57BL6 (B6) control mice, T-bet−/− mice had normal cellular composition in lymphohematopoietic tissues, but T-bet−/− lymphocytes were functionally defective. Infusion of 5 × 106 T-bet−/− lymph node (LN) cells into sublethally irradiated, major histocompatibility complex–mismatched CByB6F1 (F1) recipients failed to induce the severe marrow hypoplasia and fatal pancytopenia that is produced by injection of similar numbers of B6 LN cells. Increasing T-bet−/− LN-cell dose to 10 to 23 × 106 per recipient led to only mild hematopoietic deficiency. Recipients of T-bet−/− LN cells had no expansion in T cells or interferon-γ–producing T cells but showed a significant increase in Lin−Sca1+CD117+CD34− BM cells. Plasma transforming growth factor-β and interleukin-17 concentrations were increased in T-bet−/− LN-cell recipients, possibly a compensatory up-regulation of the Th17 immune response. Continuous infusion of interferon-γ resulted in hematopoietic suppression but did not cause T-bet−/− LN-cell expansion or BM destruction. Our data provided fresh evidence demonstrating a critical role of T-bet in immune-mediated BM failure.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 260 ◽  
Author(s):  
Martin Vaeth ◽  
Stefan Feske

Nuclear factor of activated T cells (NFAT) was first described almost three decades ago as a Ca2+/calcineurin-regulated transcription factor in T cells. Since then, a large body of research uncovered the regulation and physiological function of different NFAT homologues in the immune system and many other tissues. In this review, we will discuss novel roles of NFAT in T cells, focusing mainly on its function in humoral immune responses, immunological tolerance, and the regulation of immune metabolism.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3044 ◽  
Author(s):  
Peter Kok-Ting Wan ◽  
Michelle Kwan-Yee Siu ◽  
Thomas Ho-Yin Leung ◽  
Xue-Tang Mo ◽  
Karen Kar-Loen Chan ◽  
...  

Nuclear receptor related-1 protein (Nurr1), coded by an early response gene, is involved in multiple cellular and physiological functions, including proliferation, survival, and self-renewal. Dysregulation of Nurr1 has been frequently observed in many cancers and is attributed to multiple transcriptional and post-transcriptional mechanisms. Besides, Nurr1 exhibits extensive crosstalk with many oncogenic and tumor suppressor molecules, which contribute to its potential pro-malignant behaviors. Furthermore, Nurr1 is a key player in attenuating antitumor immune responses. It not only potentiates immunosuppressive functions of regulatory T cells but also dampens the activity of cytotoxic T cells. The selective accessibility of chromatin by Nurr1 in T cells is closely associated with cell exhaustion and poor efficacy of cancer immunotherapy. In this review, we summarize the reported findings of Nurr1 in different malignancies, the mechanisms that regulate Nurr1 expression, and the downstream signaling pathways that Nurr1 employs to promote a wide range of malignant phenotypes. We also give an overview of the association between Nurr1 and antitumor immunity and discuss the inhibition of Nurr1 as a potential immunotherapeutic strategy.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 154 ◽  
Author(s):  
Alberto Anel ◽  
Ana Gallego-Lleyda ◽  
Diego de Miguel ◽  
Javier Naval ◽  
Luis Martínez-Lostao

: T-cell mediated immune responses should be regulated to avoid the development of autoimmune or chronic inflammatory diseases. Several mechanisms have been described to regulate this process, namely death of overactivated T cells by cytokine deprivation, suppression by T regulatory cells (Treg), induction of expression of immune checkpoint molecules such as CTLA-4 and PD-1, or activation-induced cell death (AICD). In addition, activated T cells release membrane microvesicles called exosomes during these regulatory processes. In this review, we revise the role of exosome secretion in the different pathways of immune regulation described to date and its importance in the prevention or development of autoimmune disease. The expression of membrane-bound death ligands on the surface of exosomes during AICD or the more recently described transfer of miRNA or even DNA inside T-cell exosomes is a molecular mechanism that will be analyzed.


Sign in / Sign up

Export Citation Format

Share Document