scholarly journals Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase

2016 ◽  
Vol 113 (31) ◽  
pp. E4567-E4576 ◽  
Author(s):  
Kai Xun Chan ◽  
Peter D. Mabbitt ◽  
Su Yin Phua ◽  
Jonathan W. Mueller ◽  
Nazia Nisar ◽  
...  

Intracellular signaling during oxidative stress is complex, with organelle-to-nucleus retrograde communication pathways ill-defined or incomplete. Here we identify the 3′-phosphoadenosine 5′-phosphate (PAP) phosphatase SAL1 as a previously unidentified and conserved oxidative stress sensor in plant chloroplasts. Arabidopsis thaliana SAL1 (AtSAL1) senses changes in photosynthetic redox poise, hydrogen peroxide, and superoxide concentrations in chloroplasts via redox regulatory mechanisms. AtSAL1 phosphatase activity is suppressed by dimerization, intramolecular disulfide formation, and glutathionylation, allowing accumulation of its substrate, PAP, a chloroplast stress retrograde signal that regulates expression of plastid redox associated nuclear genes (PRANGs). This redox regulation of SAL1 for activation of chloroplast signaling is conserved in the plant kingdom, and the plant protein has evolved enhanced redox sensitivity compared with its yeast ortholog. Our results indicate that in addition to sulfur metabolism, SAL1 orthologs have evolved secondary functions in oxidative stress sensing in the plant kingdom.

2019 ◽  
Vol 65 (3) ◽  
pp. 165-179 ◽  
Author(s):  
N.Y. Rusetskaya ◽  
I.V. Fedotov ◽  
V.A. Koftina ◽  
V.B. Borodulin

Monocytes and macrophages play a key role in the development of inflammation: under the action of lipopolysaccharides (LPS), absorbed from the intestine, monocytes and macrophages form reactive oxygen species (ROS) and cytokines, this leads to the development of oxidative stress, inflammation and/or apoptosis in all types of tissues. In the cells LPS induce an “internal” TLR4-mediated MAP-kinase inflammatory signaling pathway and cytokines through the superfamily of tumor necrosis factor receptor (TNFR) and the “death domain” (DD) initiate an “external” caspase apoptosis cascade or necrosis activation that causes necroptosis. Many of the proteins involved in intracellular signaling cascades (MYD88, ASK1, IKKa/b, NF-kB, AP-1) are redox-sensitive and their activity is regulated by antioxidants thioredoxin, glutaredoxin, nitroredoxin, and glutathione. Oxidation of these signaling proteins induced by ROS enhances the development of inflammation and apoptosis, and their reduction with antioxidants, on the contrary, stabilizes the signaling cascades speed, preventing the vicious circle of oxidative stress, inflammation and apoptosis that follows it. Antioxidant (AO) enzymes thioredoxin reductase (TRXR), glutaredoxin reductase (GLRXR), glutathione reductase (GR) are required for reduction of non-enzymatic antioxidants (thioredoxin, glutaredoxin, nitroredoxin, glutathione), and AO enzymes (SOD, catalase, GPX) are required for ROS deactivation. The key AO enzymes (TRXR and GPX) are selenium-dependent; therefore selenium deficiency leads to a decrease in the body's antioxidant defense, the development of oxidative stress, inflammation, and/or apoptosis in various cell types. Nrf2-Keap1 signaling pathway activated by selenium deficiency and/or oxidative stress is necessary to restore redox homeostasis in the cell. In addition, expression of some genes is changed with selenium deficiency. Consequently, growth and proliferation of cells, their movement, development, death, and survival, as well as the interaction between cells, the redox regulation of intracellular signaling cascades of inflammation and apoptosis, depend on the selenium status of the body. Prophylactic administration of selenium-containing preparations (natural and synthetic (organic and inorganic)) is able to normalize the activity of AO enzymes and the general status of the body. Organic selenium compounds have a high bioavailability and, depending on their concentration, can act both as selenium donors to prevent selenium deficiency and as antitumor drugs due to their toxicity and participation in the regulation of signaling pathways of apoptosis. Known selenorganic compounds diphenyldiselenide and ethaselen share similarity with the Russian organo selenium compound, diacetophenonylselenide (DAPS-25), which serves as a source of bioavailable selenium, exhibits a wide range of biological activity, including antioxidant activity, that governs cell redox balance, inflammation and apoptosis regulation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kathrin Ulrich ◽  
Blanche Schwappach ◽  
Ursula Jakob

AbstractThiol-based redox switches evolved as efficient post-translational regulatory mechanisms that enable individual proteins to rapidly respond to sudden environmental changes. While some protein functions need to be switched off to save resources and avoid potentially error-prone processes, protective functions become essential and need to be switched on. In this review, we focus on thiol-based activation mechanisms of stress-sensing chaperones. Upon stress exposure, these chaperones convert into high affinity binding platforms for unfolding proteins and protect cells against the accumulation of potentially toxic protein aggregates. Their chaperone activity is independent of ATP, a feature that becomes especially important under oxidative stress conditions, where cellular ATP levels drop and canonical ATP-dependent chaperones no longer operate. Vice versa, reductive inactivation and substrate release require the restoration of ATP levels, which ensures refolding of client proteins by ATP-dependent foldases. We will give an overview over the different strategies that cells evolved to rapidly increase the pool of ATP-independent chaperones upon oxidative stress and provide mechanistic insights into how stress conditions are used to convert abundant cellular proteins into ATP-independent holding chaperones.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 153
Author(s):  
Aslı Devrim-Lanpir ◽  
Lee Hill ◽  
Beat Knechtle

Exercise frequently alters the metabolic processes of oxidative metabolism in athletes, including exposure to extreme reactive oxygen species impairing exercise performance. Therefore, both researchers and athletes have been consistently investigating the possible strategies to improve metabolic adaptations to exercise-induced oxidative stress. N-acetylcysteine (NAC) has been applied as a therapeutic agent in treating many diseases in humans due to its precursory role in the production of hepatic glutathione, a natural antioxidant. Several studies have investigated NAC’s possible therapeutic role in oxidative metabolism and adaptive response to exercise in the athletic population. However, still conflicting questions regarding NAC supplementation need to be clarified. This narrative review aims to re-evaluate the metabolic effects of NAC on exercise-induced oxidative stress and adaptive response developed by athletes against the exercise, especially mitohormetic and sarcohormetic response.


2015 ◽  
Vol 197 (23) ◽  
pp. 3626-3628 ◽  
Author(s):  
Larry Reitzer

In this issue of theJournal of Bacteriology, Chonoles Imlay et al. (K. R. Chonoles Imlay, S. Korshunov, and J. A. Imlay, J Bacteriol 197:3629–3644, 2015,http://dx.doi.org/10.1128/JB.00277-15) show that oxidative stress kills sulfur-restrictedEscherichia coligrown with sublethal H2O2when challenged with cystine. Killing requires rapid and seemingly unregulated cystine transport and equally rapid cystine reduction to cysteine. Cysteine export completes an energy-depleting futile cycle. Each reaction of the cycle could be beneficial. Together, a cystine-mediated vulnerability emerges during the transition from a sulfur-restricted to a sulfur-replete environment, perhaps because of complexities of sulfur metabolism.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2401
Author(s):  
Shih-Kai Chiang ◽  
Shuen-Ei Chen ◽  
Ling-Chu Chang

Heme oxygenases (HOs) act on heme degradation to produce carbon monoxide (CO), free iron, ferritin, and biliverdin. Upregulation of cellular HO-1 levels is signature of oxidative stress for its downstream effects particularly under pro-oxidative status. Subcellular traffics of HO-1 to different organelles constitute a network of interactions compromising a variety of effectors such as pro-oxidants, ROS, mitochondrial enzymes, and nucleic transcription factors. Some of the compartmentalized HO-1 have been demonstrated as functioning in the progression of cancer. Emerging data show the multiple roles of HO-1 in tumorigenesis from pathogenesis to the progression to malignancy, metastasis, and even resistance to therapy. However, the role of HO-1 in tumorigenesis has not been systematically addressed. This review describes the crosstalk between HO-1 and oxidative stress, and following redox regulation in the tumorigenesis. HO-1-regulated signaling pathways are also summarized. This review aims to integrate basic information and current progress of HO-1 in cancer research in order to enhance the understandings and facilitate following studies.


2021 ◽  
Author(s):  
Hayato Irokawa ◽  
Satoshi Numasaki ◽  
Shin Kato ◽  
Kenta Iwai ◽  
Atsushi Inose-Maruyama ◽  
...  

Redox regulation of proteins via cysteine residue oxidation is involved in the control of various cellular signal pathways. Pyruvate kinase M2 (PKM2), a rate-limiting enzyme in glycolysis, is critical for the metabolic shift from glycolysis to the pentose phosphate pathway under oxidative stress in cancer cell growth. The PKM2 tetramer is required for optimal pyruvate kinase (PK) activity, whereas the inhibition of inter-subunit interaction of PKM2 induced by Cys358 oxidation has reduced PK activity. In the present study, we identified three oxidation-sensitive cysteine residues (Cys358, Cys423 and Cys424) responsible for four oxidation forms via the thiol oxidant diamide and/or hydrogen peroxide (H2O2). Possibly due to obstruction of the dimer-dimer interface, H2O2-induced sulfenylation (-SOH) and diamide-induced modification at Cys424 inhibited tetramer formation and PK activity. Cys423 is responsible for intermolecular disulphide bonds with heterologous proteins via diamide. Additionally, intramolecular polysulphide linkage (–Sn–, n≧3) between Cys358 and an unidentified PKM2 Cys could be induced by diamide. We observed that cells expressing the oxidation-resistant PKM2 (PKM2C358,424A) produced more intracellular reactive oxygen species (ROS) and exhibited greater sensitivity to ROS-generating reagents and ROS-inducible anti-cancer drugs compared to cells expressing wildtype PKM2. These results highlight the possibility that PKM2 inhibition via Cys358 and Cys424 oxidation contributes to eliminating excess ROS and oxidative stress.


2018 ◽  
Author(s):  
Paula Santabárbara-Ruiz ◽  
José Esteban-Collado ◽  
Lidia Pérez ◽  
Giacomo Viola ◽  
Marco Milán ◽  
...  

AbstractThe mechanism by which apoptotic cells release signals that induce undamaged neighbor cells to proliferate and regenerate missing parts remains elusive. Oxidative stress originated by dying or damaged cells can be propagated to neighboring cells, which then promote regeneration. We investigated the nature of the stress sensing mechanism by which neighboring cells are recruited. We found that Drosophila apoptosis signal-regulating kinase 1 (Ask1) senses reactive oxygen species (ROS) differently in stressed dying cells and unstressed neighboring cells and this differential sensing is pivotal for tissue repair. In undamaged cells, this activity is attenuated, but not abolished, by Akt1 phosphorylation, which thus acts as a survival signal that results in the tolerable levels of p38 and JNK necessary for regeneration. These observations demonstrate that the non-autonomous activation of the ROS-sensing mechanism by Ask1 and Akt1 in neighboring unstressed cells. Collectively, these results provide the basis for understanding the molecular mechanism of communication between dying and living cells that triggers regeneration.Author summaryOne of the early events that occur after tissue damage is oxidative stress production that signals to initiate wound healing and regeneration. Several signaling pathways, such as JNK and p38, respond to oxidative stress and are necessary for regeneration. We decided to explore the mechanism that links the oxidative stress and the activation of these pathways. We used epithelia of Drosophila to genetically direct cell death in specific zones of the tissue as means of experimentally controlled cell damage. We found that the Ask1 protein, which is sensitive to oxidative stress, is a key player in this scenario. Actually it acts as an intracellular sensor that upon damage activates those signaling pathways. However, high activity of Ask1 can be toxic for the cell. This is controlled by Akt, an enzyme dowstream the insulin pathway, with attenuates the activity of Ask1 to tolerable levels. In conclusion, Ask1 and Akt act synergistically to respond to the stress generated after tissue damage and drive regeneration. In other words, we found that the link between oxidative stress and nutrition is key for tissue regeneration.


2016 ◽  
Vol 35 (12) ◽  
pp. 1312-1329 ◽  
Author(s):  
Nicolas Stankovic‐Valentin ◽  
Katarzyna Drzewicka ◽  
Cornelia König ◽  
Elmar Schiebel ◽  
Frauke Melchior

Author(s):  
Jipeng Ma ◽  
Lifang Yang ◽  
Jun Ren ◽  
Jian Yang

Sign in / Sign up

Export Citation Format

Share Document