scholarly journals Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy

2016 ◽  
Vol 113 (44) ◽  
pp. 12592-12597 ◽  
Author(s):  
Uros Kuzmanov ◽  
Hongbo Guo ◽  
Diana Buchsbaum ◽  
Jake Cosme ◽  
Cynthia Abbasi ◽  
...  

Phospholamban (PLN) plays a central role in Ca2+ homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase 2A (SERCA2A) Ca2+ pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function.

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Saiti S Halder ◽  
Lorenzo R Sewanan ◽  
Michael J Rynkiewicz ◽  
Jeffrey R Moore ◽  
William J Lehman ◽  
...  

Missense mutations in alpha-tropomyosin (TPM1) can lead to development of hypertrophic (HCM) or dilated cardiomyopathy (DCM). HCM mutation E62Q and DCM mutation E54K have previously been studied extensively in experimental systems ranging from in vitro biochemical assays to animal models, although some conflicting results have been found. We undertook a detailed multi-scale assessment of these mutants that included atomistic simulations, regulated in vitro motility (IVM) assays, and finally physiologically relevant human engineered heart tissues. In IVM assays, E62Q previously has shown increased Calcium sensitivity. New molecular dynamics data shows mutation-induced changes to tropomyosin dynamics and interactions with actin and troponin. Human engineered heart tissues (EHT) were generated by seeding iPSC-derived cardiomyocytes engineered using CRISPR/CAS9 to express either E62Q or E54K cardiomyopathy mutations. After two weeks in culture, E62Q EHTs showed a drastically hypercontractile twitch force and significantly increased stiffness while displaying little difference in twitch kinetics compared to wild-type isogenic control EHTs. On the other hand, E54K EHTs displayed hypocontractile isometric twitch force with faster kinetics, impaired length-dependent activation and lowered stiffness. Given these contractile abnormalities, we hypothesized that small molecule myosin modulators to appropriately activate or inhibit myosin activity would restore E54K or E62Q EHTs to normal behavior. Accordingly, E62Q EHTs were treated with 0.5μM mavacamten (to remedy hypercontractility) and E54K EHTs with 0.5 μM danicamtiv (to remedy hypocontractility) for 4 days, followed by a 1 day washout period. Upon contractility testing, it was observed that the drugs were able to reverse contractile phenotypes observed in mutant EHTs and restore contractile properties to levels resembling those of the untreated wild type group. The computational, IVM and EHT studies provide clear evidence in support of the hyper- vs. hypo-contractility paradigm as a common axis that distinguishes HCM and DCM TPM1 mutations. Myosin modulators that directly compensate for underlying myofilament aberrations show promising efficacy in human in vitro systems.


2021 ◽  
Author(s):  
Carles Vilarino-Guell ◽  
Mary Encarnacion ◽  
Cecily Q Bernales ◽  
Emily Kamma ◽  
Pierre Becquart ◽  
...  

Background: The development of effective treatments for multiple sclerosis (MS), and in particular its progressive forms, is hampered by the lack of etiologically relevant cellular and animal models of human disease. Models that recapitulate the biological and pathological processes leading to the onset and progression of MS in patients are likely to afford better translational efficacy. Following the discovery of the NR1H3 p.Arg415Gln pathogenic mutation for progressive MS in two Canadian families, we developed a knock-in mouse model harboring a homologous mutation in the endogenous gene to provide a more physiologically relevant model of human MS. Methods: Gene expression was evaluated in constitutive heterozygote (which recapitulates the human disease genotype) and homozygote Nr1h3 p.Arg413Gln knock-in mice on a C57BL/6 background, and compared to wild-type littermates. AmpliSeq Transcriptome Mouse Gene Expression kits analyzed on an Ion Proton sequencer were used to generate the gene expression profiles of spleen, liver, brain and spinal cord tissue from three-month-old male and female mice. Differential expression between genotypes was assessed with DESeq2, and Gene Ontologies pathways enrichment analysis performed with DAVID v6.8. Benjamini-Hochberg false discovery rate (FDR) correction for multiple testing was applied. Results: Transcriptome analysis of spleen tissue from Nr1h3 p.Arg413Gln mice revealed 23 significantly dysregulated genes (FDR<0.05) with greater than a two-fold change in expression. These include CD5 antigen-like (Cd5l), complement component 6 (C6), procollagen C-endopeptidase enhancer 2 (Pcolce2), interleukin 22 receptor, alpha 2 (Il22ra2), and T cell immunoglobulin and mucin domain containing 4 (Timd4). Gene Ontology enrichment analysis support upregulation of cell cycle pathways and downregulation of immune system response in splenic cells. The liver transcriptome identified 27 significantly dysregulated genes with greater than a two-fold change in expression compared to wild-type littermates. Cd5l, Timd4, C-C motif chemokine receptor 3 (Ccr3), ADAM metallopeptidase domain 11 (Adam11) and macrophage expressed 1 (Mpeg1) were amongst those most significantly dysregulated. Enrichment analysis supported altered immune function with upregulation of sterol and steroid metabolic processes and downregulation of fatty acid biosynthesis and inflammatory and immune system responses. Although brain and spinal cord transcriptome profiles identified several genes significantly dysregulated in Nr1h3 mice compared to wild-type littermates (FDR<0.05), none presented greater than two-fold changes in gene expression. Discussion: The analysis of the Nr1h3 p.Arg413Gln mouse model of MS suggests that the predominance of a pro-inflammatory over a healing or reparative phenotype, combined with deficiencies in myelination and remyelination, are the biological mechanisms implicated in the onset of MS and the development of a more severe progressive disease course observed in patients with NR1H3 mutations. Association of NR1H3 common variants with MS risk indicates that the disruption of these biological and immunological processes is not only informative for familial forms of disease but MS patients at large. Differences in transcriptome profiles underline the value of this model for the development and validation of novel therapeutic strategies and ultimately treatments with the potential to delay or even halt the onset of progressive MS and to ameliorate the severity of clinical symptoms.


2018 ◽  
Vol 16 (1) ◽  
pp. 49-55 ◽  
Author(s):  
J. Stenzel ◽  
C. Rühlmann ◽  
T. Lindner ◽  
S. Polei ◽  
S. Teipel ◽  
...  

Background: Positron-emission-tomography (PET) using 18F labeled florbetaben allows noninvasive in vivo-assessment of amyloid-beta (Aβ), a pathological hallmark of Alzheimer’s disease (AD). In preclinical research, [<sup>18</sup>F]-florbetaben-PET has already been used to test the amyloid-lowering potential of new drugs, both in humans and in transgenic models of cerebral amyloidosis. The aim of this study was to characterize the spatial pattern of cerebral uptake of [<sup>18</sup>F]-florbetaben in the APPswe/ PS1dE9 mouse model of AD in comparison to histologically determined number and size of cerebral Aβ plaques. Methods: Both, APPswe/PS1dE9 and wild type mice at an age of 12 months were investigated by smallanimal PET/CT after intravenous injection of [<sup>18</sup>F]-florbetaben. High-resolution magnetic resonance imaging data were used for quantification of the PET data by volume of interest analysis. The standardized uptake values (SUVs) of [<sup>18</sup>F]-florbetaben in vivo as well as post mortem cerebral Aβ plaque load in cortex, hippocampus and cerebellum were analyzed. Results: Visual inspection and SUVs revealed an increased cerebral uptake of [<sup>18</sup>F]-florbetaben in APPswe/ PS1dE9 mice compared with wild type mice especially in the cortex, the hippocampus and the cerebellum. However, SUV ratios (SUVRs) relative to cerebellum revealed only significant differences in the hippocampus between the APPswe/PS1dE9 and wild type mice but not in cortex; this differential effect may reflect the lower plaque area in the cortex than in the hippocampus as found in the histological analysis. Conclusion: The findings suggest that histopathological characteristics of Aβ plaque size and spatial distribution can be depicted in vivo using [<sup>18</sup>F]-florbetaben in the APPswe/PS1dE9 mouse model.


2021 ◽  
Vol 9 (1) ◽  
pp. 17
Author(s):  
Mayumi Minamisawa ◽  
Takuma Suzumura ◽  
Sudeep Bose ◽  
Tetsuyuki Taniai ◽  
Gota Kawai ◽  
...  

The effect of limonoids and spermine (Spm) extracted from yuzu (Citrus junos) seeds on the gut and the brain in a mouse model with Sandhoff disease (SD) was investigated. Wild-type and SD mice were fed a normal diet, or a diet supplemented with limonoid, Spm, or limonoid + Spm for 14–18 weeks, and then 16S rRNA gene amplicon sequencing with extracted DNA from their feces was executed. For SD control mice, intestinal microbiota was mostly composed of Lactobacillus and linked to dysbiosis. For SD and wild-type mice fed with limonoids + Spm or limonoids alone, intestinal microbiota was rich in mucin-degrading bacteria, including Bacteroidetes, Verrucomicrobia, and Firmicutes, and displayed a higher production of short-chain fatty acids and immunoglobulin A. Additionally, SD mice fed with limonoids + Spm or limonoids alone had less inflammation in hypothalamic tissues and displayed a greater number of neurons. Administration of limonoids and/or Spm improved the proportions of beneficial intestinal microbiota to host health and reduced neuronal degeneration in SD mice. Yuzu seed limonoids and Spermine may help to maintain the homeostasis of intestinal microbiota and hypothalamic tissue in the SD mouse model.


Genetics ◽  
1974 ◽  
Vol 76 (2) ◽  
pp. 289-299
Author(s):  
Margaret McCarron ◽  
William Gelbart ◽  
Arthur Chovnick

ABSTRACT A convenient method is described for the intracistronic mapping of genetic sites responsible for electrophoretic variation of a specific protein in Drosophila melanogaster. A number of wild-type isoalleles of the rosy locus have been isolated which are associated with the production of electrophoretically distinguishable xanthine dehydrogenases. Large-scale recombination experiments were carried out involving null enzyme mutants induced on electrophoretically distinct wild-type isoalleles, the genetic basis for which is followed as a nonselective marker in the cross. Additionally, a large-scale recombination experiment was carried out involving null enzyme rosy mutants induced on the same wild-type isoallele. Examination of the electrophoretic character of crossover and convertant products recovered from the latter experiment revealed that all exhibited the same parental electrophoretic character. In addition to documenting the stability of the xanthine dehydrogenase electrophoretic character, this observation argues against a special mutagenesis hypothesis to explain conversions resulting from allele recombination studies.


2020 ◽  
Vol 4 (11) ◽  
Author(s):  
Katherine M Ranard ◽  
Matthew J Kuchan ◽  
John W Erdman

ABSTRACT Studying vitamin E [α-tocopherol (α-T)] metabolism and function in the brain and other tissues requires an animal model with low α-T status, such as the transgenic α-T transfer protein (Ttpa)–null (Ttpa−/−) mouse model. Ttpa+/− dams can be used to produce Ttpa−/− and Ttpa+/+mice for these studies. However, the α-T content in Ttpa+/− dams’ diet requires optimization; diets must provide sufficient α-T for reproduction, while minimizing the transfer of α-T to the offspring destined for future studies that require low baseline α-T status. The goal of this work was to assess the effectiveness and feasibility of 2 breeding diet strategies on reproduction outcomes and offspring brain α-T concentrations. These findings will help standardize the breeding methodology used to generate the Ttpa−/− mice for neurological studies.


Sign in / Sign up

Export Citation Format

Share Document