scholarly journals Geometry and network connectivity govern the mechanics of stress fibers

2017 ◽  
Vol 114 (10) ◽  
pp. 2622-2627 ◽  
Author(s):  
Elena Kassianidou ◽  
Christoph A. Brand ◽  
Ulrich S. Schwarz ◽  
Sanjay Kumar

Actomyosin stress fibers (SFs) play key roles in driving polarized motility and generating traction forces, yet little is known about how tension borne by an individual SF is governed by SF geometry and its connectivity to other cytoskeletal elements. We now address this question by combining single-cell micropatterning with subcellular laser ablation to probe the mechanics of single, geometrically defined SFs. The retraction length of geometrically isolated SFs after cutting depends strongly on SF length, demonstrating that longer SFs dissipate more energy upon incision. Furthermore, when cell geometry and adhesive spacing are fixed, cell-to-cell heterogeneities in SF dissipated elastic energy can be predicted from varying degrees of physical integration with the surrounding network. We apply genetic, pharmacological, and computational approaches to demonstrate a causal and quantitative relationship between SF connectivity and mechanics for patterned cells and show that similar relationships hold for nonpatterned cells allowed to form cell–cell contacts in monolayer culture. Remarkably, dissipation of a single SF within a monolayer induces cytoskeletal rearrangements in cells long distances away. Finally, stimulation of cell migration leads to characteristic changes in network connectivity that promote SF bundling at the cell rear. Our findings demonstrate that SFs influence and are influenced by the networks in which they reside. Such higher order network interactions contribute in unexpected ways to cell mechanics and motility.

2021 ◽  
Author(s):  
Timothy Morris ◽  
Eva Sue ◽  
Caleb Geniesse ◽  
William M Brieher ◽  
Vivian W Tang

AbstractThe apical junction of epithelial cells can generate force to control cell geometry and perform contractile processes while maintaining barrier function and cell-cell adhesion. Yet, the structural basis of force generation at the apical junction is not completely understood. Here, we describe 2 actomyosin structures at the apical junction containing synaptopodin, myosin IIB, and alpha-actinin-4. We showed that synaptopodin is required for the assembly of E-cadherin-associated apical stress fibers and a novel macromolecular structure, which we named contractomere. Knockdown of synaptopodin abolished both apical stress fiber and contractomere formation. Moreover, depletion of synaptopodin abolished basal stress fibers, converting myosin IIA sarcomere-like arrangement into a meshwork-type actomyosin organization. We propose a new model of junction dynamics that is dependent on contractomere movement to control epithelial cell boundary and geometry. Our findings reveal 2 actomyosin structures at the epithelial junction and underscore synaptopodin in the assembly of stress fibers and contractomeres.Summary StatementSynaptopodin assembles 2 actomyosin structures at the epithelial junction: apical stress fiber and contractomere. Synaptopodin selectively regulates myosin IIB without altering the level of myosin IIA and is responsible for converting evolutionary-conserved actomyosin meshwork into vertebrate-specific stress fibers.Graphic Abstract


1993 ◽  
Vol 71 (7-8) ◽  
pp. 361-371 ◽  
Author(s):  
Christine L. Haskin ◽  
Kyriacos A. Athanasiou ◽  
Robert Klebe ◽  
Ivan L. Cameron

Human osteosarcoma cells, MG-63, were exposed to a hydrostatic pressure shock of 4.0 MPa for 20 min. Changes in subcellular distribution of the cytoskeletal elements and heat shock protein 70 (hsp70) were followed by indirect immunofluorescence and by avidin–biotin–peroxidase protocols. During recovery, total cellular RNA was determined and actin and aldolase mRNA content was followed using reverse transcription – polymerase chain reaction techniques. Hydrostatic pressure caused cell rounding (but not cell death), disruption of microtubules, collapse of intermediate filaments to a perinuclear location, collapse of actin stress fibers into globular aggregates in the cytoplasm, and the formation of several large elongated intranuclear actin inclusions. During recovery, the cells flattened, reorganized microtubules, and redistributed intermediate filaments prior to the reappearance of actin stress fibers. At 20 and 60 min following the initiation of hydrostatic pressure, there was increased anti-hsp70 staining at the nuclear membrane and concentration of hsp70 in four to six granules in the nucleus. At 120 min following the hydrostatic pressure, hsp70 showed intense staining in the cytoplasm and hsp70-containing granules in the nucleus disappeared. Cellular RNA decreased during the first 120-min posthydrostatic pressure shock and then recovered to near prehydrostatic pressure treatment levels by 240 min. Actin mRNA abundance, in relation to aldolase mRNA abundance, showed the same temporal pattern of initial decrease, followed by increase as did total RNA. Review of the literature indicated that eukaryotic cells respond to heat shock and to hydrostatic pressure by disruption of the cytoskeletal elements and by similar modifications in genetic expression. In this study, the observed responses of MG-63 cells to a 4-MPa hydrostatic pressure shock was like the reported response of mammalian cells to a 43 °C heat shock.Key words: heat shock response, hydrostatic pressure, cytoskeleton.


2021 ◽  
pp. mbc.E21-03-0156
Author(s):  
Stefano Sala ◽  
Patrick W. Oakes

The actin cytoskeleton is a key regulator of mechanical processes in cells. The family of LIM domain proteins have recently emerged as important mechanoresponsive cytoskeletal elements capable of sensing strain in the actin cytoskeleton. The mechanisms regulating this mechanosensitive behavior, however, remain poorly understood. Here we show that the LIM domain protein testin is peculiar in that despite the full-length protein primarily appearing diffuse in the cytoplasm, the C-terminal LIM domains alone recognize focal adhesions and strained actin while the N-terminal domains alone recognize stress fibers. Phosphorylation mutations in the dimerization regions of testin, however, reveal its mechanosensitivity and cause it to relocate to focal adhesions and sites of strain in the actin cytoskeleton. Finally, we demonstrate activated RhoA causes testin to adorn stress fibers and become mechanosensitive. Together, our data show that testin's mechanoresponse is regulated in cells and provide new insights into LIM domain protein recognition of the actin cytoskeleton mechanical state. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]


Author(s):  
R.L. Price ◽  
T.K. Borg ◽  
L. Terracio ◽  
M. Nakagawa

Little is known about the temporal expression of extracellular matrix components (ECM) and its receptors during development of the heart. Recent reports have shown that ECM components undergo both qualitative and quantitative changes during development, and it is believed that ECM components are important in the regulation of cell migration and cell:cell and cell:ECM recognition and adhesion.Integrins are transmembrane glycoproteins which bind several ECM components on their external face and cytoskeletal elements on the cytoplasmic face. Laminin is a basement membrane component which has been recognized as an important site for cell adhesion. Both the integrins and laminin are expressed early in development and continue to be expressed in the adult heart. With their documented roles in cell recognition, and cell:cell and cell:ECM migration and adhesion these proteins appear to be important components in development of the heart, and their temporal expression may play a pivotal role in morphogenesis and myofibrillogenesis of the heart.


Author(s):  
S.W. French ◽  
N.C. Benson ◽  
C. Davis-Scibienski

Previous SEM studies of liver cytoskeletal elements have encountered technical difficulties such as variable metal coating and heat damage which occurs during metal deposition. The majority of studies involving evaluation of the cell cytoskeleton have been limited to cells which could be isolated, maintained in culture as a monolayer and thus easily extracted. Detergent extraction of excised tissue by immersion has often been unsatisfactory beyond the depth of several cells. These disadvantages have been avoided in the present study. Whole C3H mouse livers were perfused in situ with 0.5% Triton X-100 in a modified Jahn's buffer including protease inhibitors. Perfusion was continued for 1 to 2 hours at ambient temperature. The liver was then perfused with a 2% buffered gluteraldehyde solution. Liver samples including spontaneous tumors were then maintained in buffered gluteraldehyde for 2 hours. Samples were processed for SEM and TEM using the modified thicarbohydrazide procedure of Malich and Wilson, cryofractured, and critical point dried (CPD). Some samples were mechanically fractured after CPD.


Author(s):  
P. Gambetti ◽  
G. Perry ◽  
L. Autillo-Gambetti

Neurofibrillary tangles (NFT) are one of the major pathologic lesions of Alzheimer's disease. These neuronal inclusions are predominantly composed of paired helical filaments (PHF), which consist of two 10 nm filaments winding around each other with an approximately 80 nm periodicity. Besides PHF, NFT comprise also 15 nm filaments, 10 nm filaments which are probably neurofilaments, microtubules and granular material. At variance with the neuronal cytoskeleton, PHF are insoluble in ionic detergent.Studies at the light microscope level have shown that NFT have unique antigenic determinants as well as determinants in common with elements of the normal neuronal cytoskeleton such as neurofilaments and microtubule-associated proteins. The present study uses immunocytochemistry and cytochemistry at the electron microscope level to assess which NFT component contains these determinants and whether these antigenic determinants are soluble in an ionic detergent.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


Author(s):  
William Theurkauf

Cell division in eucaryotes depends on coordinated changes in nuclear and cytoskeletal components. In Drosophila melanogaster embryos, the first 13 nuclear divisions occur without cytokinesis. During the final four divisions, nuclei divide in a uniform monolayer at the surface of the embryo. These surface divisions are accompanied by dramatic changes in cortical actin and microtubule structure (Karr and Alberts, 1986), and inhibitor studies indicate that these changes are essential to orderly mitosis (Zalokar and Erk, 1976). Because the early embryo is syncytial, fluorescent probes introduced by microinjection are incorporated in structures associated with all of the nuclei in the blastoderm. In addition, the nuclei divide synchronously every 10 to 20 min. These characteristics make the syncytial blastoderm embryo an excellent system for the analysis of mitotic reorganization of both nuclear and cytoskeletal elements. However, the Drosophila embryo is a large cell, and resolution of cytoskeletal filaments and nuclear structure is hampered by out-of focus signal.


2012 ◽  
Author(s):  
Rosemarie Kluetsch ◽  
Tomas Ros ◽  
Jean Theberge ◽  
Paul Frewen ◽  
Christian Schmahl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document