scholarly journals Pathogen-mediated manipulation of arthropod microbiota to promote infection

2017 ◽  
Vol 114 (5) ◽  
pp. E781-E790 ◽  
Author(s):  
Nabil M. Abraham ◽  
Lei Liu ◽  
Brandon Lyon Jutras ◽  
Akhilesh K. Yadav ◽  
Sukanya Narasimhan ◽  
...  

Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood.Ixodes scapularisticks harbor numerous human pathogens, includingAnaplasma phagocytophilum,the agent of human granulocytic anaplasmosis. We now demonstrate thatA. phagocytophilummodifies theI. scapularismicrobiota to more efficiently infect the tick.A. phagocytophiluminduces ticks to expressIxodes scapularisantifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier—critical obstacles forAnaplasmacolonization. Mechanistically, IAFGP binds the terminald-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector.

Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 309 ◽  
Author(s):  
Agustín Estrada-Peña ◽  
Alejandro Cabezas-Cruz ◽  
Dasiel Obregón

Ixodes scapularis ticks harbor microbial communities including pathogenic and non-pathogenic microbes. Pathogen infection increases the expression of several tick gut proteins, which disturb the tick gut microbiota and impact bacterial biofilm formation. Anaplasma phagocytophilum induces ticks to express I. scapularis antifreeze glycoprotein (IAFGP), a protein with antimicrobial activity, while Borrelia burgdorferi induces the expression of PIXR. Here, we tested the resistance of I. scapularis microbiome to A. phagocytophilum infection, antimicrobial peptide IAFGP, and anti-tick immunity specific to PIXR. We demonstrate that A. phagocytophilum infection and IAFGP affect the taxonomic composition and taxa co-occurrence networks, but had limited impact on the functional traits of tick microbiome. In contrast, anti-tick immunity disturbed the taxonomic composition and the functional profile of tick microbiome, by increasing both the taxonomic and pathways diversity. Mechanistically, we show that anti-tick immunity increases the representation and importance of the polysaccharide biosynthesis pathways involved in biofilm formation, while these pathways are under-represented in the microbiome of ticks infected by A. phagocytophilum or exposed to IAFGP. These analyses revealed that tick microbiota is highly sensitive to anti-tick immunity, while it is less sensitive to pathogen infection and antimicrobial peptides. Results suggest that biofilm formation may be a defensive response of tick microbiome to anti-tick immunity.


2019 ◽  
Author(s):  
Agustín Estrada Peña ◽  
Alejandro Cabezas-Cruz ◽  
Dasiel Obregón

Abstract Background : Ixodes scapularis ticks harbor microbial communities including pathogenic and non-pathogenic microbes. Pathogen infection increases the expression of several tick gut proteins which disturb the tick gut microbiota and impact bacterial biofilm formation. Anaplasma phagocytophilum induces ticks to express I. scapularis IAFGP, a protein with antimicrobial activity while Borrelia burgdorferi induces the expression of PIXR. Here, we tested the resistance of I. scapularis microbiome to A. phagocytophilum infection, antimicrobial peptide IAFGP, and anti-tick immunity specific to PIXR. Results : We demonstrate that A. phagocytophilum infection and IAFGP affect the taxonomic composition and taxa co-occurrence networks but had no effect on the functional traits of tick microbiome. In contrast, anti-tick immunity disturbed the taxonomic composition and the functional profile of tick microbiome, by increasing both taxonomic and pathways diversity. Mechanistically, we show that anti-tick immunity increases the representation and importance of polysaccharide biosynthesis pathways involved in biofilm formation while these pathways are under-represented in the microbiome of ticks infected by A. phagocytophilum or exposed to IAFGP. Conclusions : These analyses revealed that tick microbiota is highly sensitive to anti-tick immunity, while it is less sensitive to pathogen infection and antimicrobial peptides. Results suggest that biofilm formation is a defensive response of tick microbiome to anti-tick immunity.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Mark J. Lee ◽  
Alexander M. Geller ◽  
Natalie C. Bamford ◽  
Hong Liu ◽  
Fabrice N. Gravelat ◽  
...  

ABSTRACTThe moldAspergillus fumigatuscauses invasive infection in immunocompromised patients. Recently, galactosaminogalactan (GAG), an exopolysaccharide composed of galactose andN-acetylgalactosamine (GalNAc), was identified as a virulence factor required for biofilm formation. The molecular mechanisms underlying GAG biosynthesis and GAG-mediated biofilm formation were unknown. We identified a cluster of five coregulated genes that were dysregulated in GAG-deficient mutants and whose gene products share functional similarity with proteins that mediate the synthesis of the bacterial biofilm exopolysaccharide poly-(β1-6)-N-acetyl-d-glucosamine (PNAG). Bioinformatic analyses suggested that the GAG cluster geneagd3encodes a protein containing a deacetylase domain. Because deacetylation ofN-acetylglucosamine residues is critical for the function of PNAG, we investigated the role of GAG deacetylation in fungal biofilm formation. Agd3 was found to mediate deacetylation of GalNAc residues within GAG and render the polysaccharide polycationic. As with PNAG, deacetylation is required for the adherence of GAG to hyphae and for biofilm formation. Growth of the Δagd3mutant in the presence of culture supernatants of the GAG-deficient Δuge3mutant rescued the biofilm defect of the Δagd3mutant and restored the adhesive properties of GAG, suggesting that deacetylation is an extracellular process. The GAG biosynthetic gene cluster is present in the genomes of members of thePezizomycotinasubphylum of theAscomycotaincluding a number of plant-pathogenic fungi and a single basidiomycete species,Trichosporon asahii, likely a result of recent horizontal gene transfer. The current study demonstrates that the production of cationic, deacetylated exopolysaccharides is a strategy used by both fungi and bacteria for biofilm formation.IMPORTANCEThis study sheds light on the biosynthetic pathways governing the synthesis of galactosaminogalactan (GAG), which plays a key role inA. fumigatusvirulence and biofilm formation. We find that bacteria and fungi use similar strategies to synthesize adhesive biofilm exopolysaccharides. The presence of orthologs of the GAG biosynthetic gene clusters in multiple fungi suggests that this exopolysaccharide may also be important in the virulence of other fungal pathogens. Further, these studies establish a molecular mechanism of adhesion in which GAG interacts via charge-charge interactions to bind to both fungal hyphae and other substrates. Finally, the importance of deacetylation in the synthesis of functional GAG and the extracellular localization of this process suggest that inhibition of deacetylation may be an attractive target for the development of novel antifungal therapies.


2020 ◽  
Vol 86 (21) ◽  
Author(s):  
Nataliya A. Teteneva ◽  
Sergey V. Mart’yanov ◽  
María Esteban-López ◽  
Jörg Kahnt ◽  
Timo Glatter ◽  
...  

ABSTRACT In most ecosystems, bacteria exist primarily as structured surface-associated biofilms that can be highly tolerant to antibiotics and thus represent an important health issue. Here, we explored drug repurposing as a strategy to identify new antibiofilm compounds, screening over 1,000 compounds from the Prestwick Chemical Library of approved drugs for specific activities that prevent biofilm formation by Escherichia coli. Most growth-inhibiting compounds, which include known antibacterial but also antiviral and other drugs, also reduced biofilm formation. However, we also identified several drugs that were biofilm inhibitory at doses where only a weak effect or no effect on planktonic growth could be observed. The activities of the most specific antibiofilm compounds were further characterized using gene expression analysis, proteomics, and microscopy. We observed that most of these drugs acted by repressing genes responsible for the production of curli, a major component of the E. coli biofilm matrix. This repression apparently occurred through the induction of several different stress responses, including DNA and cell wall damage, and homeostasis of divalent cations, demonstrating that biofilm formation can be inhibited through a variety of molecular mechanisms. One tested drug, tyloxapol, did not affect curli expression or cell growth but instead inhibited biofilm formation by suppressing bacterial attachment to the surface. IMPORTANCE The prevention of bacterial biofilm formation is one of the major current challenges in microbiology. Here, by systematically screening a large number of approved drugs for their ability to suppress biofilm formation by Escherichia coli, we identified a number of prospective antibiofilm compounds. We further demonstrated different mechanisms of action for individual compounds, from induction of replicative stress to disbalance of cation homeostasis to inhibition of bacterial attachment to the surface. Our work demonstrates the potential of drug repurposing for the prevention of bacterial biofilm formation and suggests that also for other bacteria, the activity spectrum of antibiofilm compounds is likely to be broad.


Author(s):  
Dina Ramić ◽  
Franz Bucar ◽  
Urban Kunej ◽  
Iztok Dogša ◽  
Anja Klančnik ◽  
...  

New approaches for the control of Campylobacter jejuni biofilms in the food industry are being studied intensively. Natural products are promising alternative antimicrobial substances to control biofilm production, with particular emphasis on plant extracts. Dried flowers of Lavandula angustifolia were used to produce LEO, LEF, and LEW. The chemical compositions determined for these Lavandula preparations included seven major compounds that were selected for further testing. These were tested against C. jejuni , for biofilm degradation and removal. Next-generation sequencing was used to study the molecular mechanisms underlying LEO actions against C. jejuni adhesion and motility. Analysis of LEO revealed 1,8-cineol, linalool and linalyl acetate as the main components. For LEF and LEW, the main components were phenolic acid glycosides, with flavonoids rarely present. The minimal inhibitory concentrations of the Lavandula preparations and pure compounds against C. jejuni ranged from 0.2 mg/mL to 1 mg/mL. LEO showed the strongest biofilm degradation. The reduction of C. jejuni adhesion was by ≥1 log 10 CFU/mL, which satisfies European Food Safety Authority recommendations. Lavandula preparations reduced C. jejuni motility by almost 50%, which consequently can impact upon biofilm formation. These data are in line with the transcriptome analysis of C. jejuni , where LEO down-regulated genes important for biofilm formation. LEW also showed good antibacterial and anti-biofilm effects, particularly against adhesion and motility mechanisms. This defines an innovative approach using alternative strategies and novel targets to combat bacterial biofilm formation, and hence the potential to develop new effective agents with biofilm-degrading activities. Importance The Lavandula preparations used in this study are found to be effective against C. jejuni , a common foodborne pathogen. They show anti-biofilm properties at sub-inhibitory concentrations in terms of promoting biofilm degradation and inhibiting cell adhesion and motility, which are involved in the initial steps of biofilm formation. These results are confirmed by transcriptome analysis, which highlights the effect of Lavandula essential oil on C. jejuni biofilm properties. We show that the waste material from the hydrodistillation of Lavandula has particular anti-biofilm effects, suggesting that it may find reuse for industrial purposes. This study highlights the need for efforts directed towards such innovative approaches and alternative strategies against biofilm formation and maintenance by developing new naturally derived agents with anti-biofilm activities.


2019 ◽  
Vol 95 (12) ◽  
Author(s):  
William J Landesman ◽  
Kenneth Mulder ◽  
L Page Fredericks ◽  
Brian F Allan

ABSTRACT The tick microbiota may influence the colonization of Ixodes scapularis by Borrelia burgdorferi, the Lyme disease bacterium. Using conserved and pathogen-specific primers we performed a cross-kingdom analysis of bacterial, fungal, protistan and archaeal communities of I. scapularis nymphs (N = 105) collected from southern Vermont, USA. The bacterial community was dominated by a Rickettsia and several environmental taxa commonly reported in I. scapularis, as well as the human pathogens B. burgdorferi and Anaplasma phagocytophilum, agent of human granulocytic anaplasmosis. With the fungal primer set we detected primarily plant- and litter-associated taxa and >18% of sequences were Malassezia, a fungal genus associated with mammalian skin. Two 18S rRNA gene primer sets, intended to target protistan communities, returned mostly Ixodes DNA as well as the wildlife pathogen Babesia odocoilei (7% of samples), a Gregarines species (14%) and a Spirurida nematode (18%). Data from pathogen-specific and conserved primers were consistent in terms of prevalence and identification. We measured B. burgdorferi presence/absence and load and found that bacterial beta diversity varied based on B. burgdorferi presence/absence. Load was weakly associated with bacterial community composition. We identified taxa associated with B. burgdorferi infection that should be evaluated for their role in vector colonization by pathogens.


mBio ◽  
2015 ◽  
Vol 6 (3) ◽  
Author(s):  
Yun Chen ◽  
Kevin Gozzi ◽  
Fang Yan ◽  
Yunrong Chai

ABSTRACTVolatiles are small air-transmittable chemicals with diverse biological activities. In this study, we showed that volatiles produced by the bacteriumBacillus subtilishad a profound effect on biofilm formation of neighboringB. subtiliscells that grew in proximity but were physically separated. We further demonstrated that one such volatile, acetic acid, is particularly potent in stimulating biofilm formation. Multiple lines of genetic evidence based onB. subtilismutants that are defective in either acetic acid production or transportation suggest thatB. subtilisuses acetic acid as a metabolic signal to coordinate the timing of biofilm formation. Lastly, we investigated howB. subtiliscells sense and respond to acetic acid in regulating biofilm formation. We showed the possible involvement of three sets of genes (ywbHG,ysbAB, andyxaKC), all encoding putative holin-antiholin-like proteins, in cells responding to acetic acid and stimulating biofilm formation. All three sets of genes were induced by acetate. A mutant with a triple mutation of those genes showed a severe delay in biofilm formation, whereas a strain overexpressingywbHGshowed early and robust biofilm formation. Results of our studies suggest thatB. subtilisand possibly other bacteria use acetic acid as a metabolic signal to regulate biofilm formation as well as a quorum-sensing-like airborne signal to coordinate the timing of biofilm formation by physically separated cells in the community.IMPORTANCEVolatiles are small, air-transmittable molecules produced by all kingdoms of organisms including bacteria. Volatiles possess diverse biological activities and play important roles in bacteria-bacteria and bacteria-host interactions. Although volatiles can be used as a novel and important way of cell-cell communication due to their air-transmittable nature, little is known about how the volatile-mediated signaling mechanism works. In this study, we demonstrate that the bacteriumBacillus subtilisuses one such volatile, acetic acid, as a quorum-sensing-like signal to coordinate the timing of the formation of structurally complex cell communities, also known as biofilms. We further characterized the molecular mechanisms of howB. subtilisresponds to acetic acid in stimulating biofilm formation. Our study also suggests that acetic acid may be used as a volatile signal for cross-species communication.


2019 ◽  
Author(s):  
William Scott ◽  
Brian Lowrance ◽  
Alexander C. Anderson ◽  
Joel T. Weadge

AbstractBiofilms are community structures of bacteria enmeshed in a self-produced matrix of exopolysaccharides. The biofilm matrix serves numerous roles, including resilience and persistence, making biofilms a subject of research interest among persistent clinical pathogens of global health importance. Our current understanding of the underlying biochemical pathways responsible for biosynthesis of these exopolysaccharides is largely limited to Gram-negative bacteria. Clostridia are a class of Gram-positive, anaerobic and spore-forming bacteria, and include the important human pathogens Clostridium perfringens, Clostridium botulinum, and Clostridioides difficile, among numerous others. Clostridia have been reported to form biofilms composed of cellulose, although the specific loci which encode the cellulose synthase have not been identified. Here, we report the discovery of a gene cluster, which we named ccsABZCD, among selected bacteria within class Clostridia that appears to encode a synthase complex responsible for polymerization, modification, and export of an O-acetylated cellulose exopolysaccharide. To test this hypothesis, we subcloned the putative glycoside hydrolase CcsZ and solved the X-ray crystal structure of both apo- and product-bound CcsZ. Our results demonstrate that CcsZ is in fact an endo-acting cellulase belonging to glycoside hydrolase family 5 (GH-5). This is in contrast to the Gram-negative cellulose synthase, which instead encodes BcsZ, a structurally distinct GH-8. We further show CcsZ is capable of hydrolysis of the soluble mock substrate carboxymethylcellulose (CMC) with a pH optimum of 4.5. The data we present here serves as an entry point to an understanding of biofilm formation among class Clostridia and allowed us to predict a model for Clostridial cellulose synthesis.Author summaryBiofilms are communities of microorganisms that enmesh themselves in a protective matrix of elf-produced polysaccharide materials. Biofilms have demonstrated roles in both virulence and persistence among bacterial pathogens of global health importance. The class Clostridia are a polyphyletic grouping of primarily Gram-positive, anaerobic and spore-forming bacteria which contain the important and well-studied human pathogens Clostridioides difficile, Clostridium botulinum, and Clostridium perfringens, among others. Bacteria belonging to class Clostridia have been anecdotally reported to form biofilms made of cellulose, although the molecular mechanisms governing their production has not before been described. In this work, we identify a gene cluster, which we name ccsABZHI, for the Clostridial cellulose synthase, which bears remarkable similarity to molecular machinery required for the production of cellulose biofilms in other Gram-negative bacteria. We further biochemically characterize one of these enzymes, CcsZ, a predicted endoglucanase which we predicted from our model should cleave cellulose exopolysaccharides. We show that CcsZ is in fact capable of this activity and belongs to a broader family of glycoside hydrolases with unexpected taxonomic diversity. Our work represents an entry point towards an understanding of the molecular mechanisms governing cellulose biofilm formation in Gram-positive bacteria.


2007 ◽  
Vol 189 (17) ◽  
pp. 6185-6194 ◽  
Author(s):  
Rosicler L. Barbosa ◽  
Celso E. Benedetti

ABSTRACT Xylella fastidiosa is a plant pathogen that colonizes the xylem vessels, causing vascular occlusion due to bacterial biofilm growth. However, little is known about the molecular mechanisms driving biofilm formation in Xylella-plant interactions. Here we show that BigR (for “biofilm growth-associated repressor”) is a novel helix-turn-helix repressor that controls the transcription of an operon implicated in biofilm growth. This operon, which encodes BigR, membrane proteins, and an unusual beta-lactamase-like hydrolase (BLH), is restricted to a few plant-associated bacteria, and thus, we sought to understand its regulation and function in X. fastidiosa and Agrobacterium tumefaciens. BigR binds to a palindromic AT-rich element (the BigR box) in the Xylella and Agrobacterium blh promoters and strongly represses the transcription of the operon in these cells. The BigR box overlaps with two alternative −10 regions identified in the blh promoters, and mutations in this box significantly affected transcription, indicating that BigR competes with the RNA polymerase for the same promoter site. Although BigR is similar to members of the ArsR/SmtB family of regulators, our data suggest that, in contrast to the initial prediction, it does not act as a metal sensor. Increased activity of the BigR operon was observed in both Xylella and Agrobacterium biofilms. In addition, an A. tumefaciens bigR mutant showed constitutive expression of operon genes and increased biofilm formation on glass surfaces and tobacco roots, indicating that the operon may play a role in cell adherence or biofilm development.


2010 ◽  
Vol 86 (3) ◽  
pp. 813-823 ◽  
Author(s):  
Paolo Landini ◽  
Davide Antoniani ◽  
J. Grant Burgess ◽  
Reindert Nijland

Sign in / Sign up

Export Citation Format

Share Document